
Multidimensional Triangulation andInterpolation for Reinforcement LearningScott Daviesscottd@cs.cmu.eduDepartment of Computer Science, Carnegie Mellon University5000 Forbes Ave, Pittsburgh, PA 15213AbstractDynamic Programming, Q-learning and other discrete Markov DecisionProcess solvers can be applied to continuous d-dimensional state-spaces byquantizing the state space into an array of boxes. This is often problematicabove two dimensions: a coarse quantization can lead to poor policies, and�ne quantization is too expensive. Possible solutions are variable-resolutiondiscretization, or function approximation by neural nets. A third option,which has been little studied in the reinforcement learning literature, isinterpolation on a coarse grid. In this paper we study interpolation tech-niques that can result in vast improvements in the online behavior of theresulting control systems: multilinear interpolation, and an interpolationalgorithm based on an interesting regular triangulation of d-dimensionalspace. We adapt these interpolators under three reinforcement learningparadigms: (i) o�ine value iteration with a known model, (ii) Q-learning,and (iii) online value iteration with a previously unknown model learnedfrom data. We describe empirical results, and the resulting implications forpractical learning of continuous non-linear dynamic control.1 GRID-BASED INTERPOLATION TECHNIQUESReinforcement learning algorithms generate functions that map states to \cost-to-go" values. When dealing with continuous state spaces these functions must beapproximated. The following approximators are frequently used:� Fine gridsmay be used in one or two dimensions. Above two dimensions,�ne grids are too expensive. Value functions can be discontinuous, which(as we will see) can lead to suboptimalities even with very �ne discretizationin two dimensions.� Neural nets have been used in conjunction with TD [Sutton, 1988] andQ-learning [Watkins, 1989] in very high dimensional spaces [Tesauro, 1991,Crites and Barto, 1996]. While promising, it is not always clear that theyproduce the accurate value functions that might be needed for �ne near-optimal control of dynamic systems, and the most commonly used methodsof applying value iteration or policy iteration with a neural-net value func-tion are often unstable. [Boyan and Moore, 1995].

Interpolation over points on a coarse grid is another potentially useful approximatorfor value functions that has been little studied for reinforcement learning. Thispaper attempts to rectify this omission. Interpolation schemes may be particularlyattractive because they are local averagers, and convergence has been proven insuch cases for o�ine value iteration [Gordon, 1995].All of the interpolation methods discussed here split the state space into a regulargrid of d-dimensional boxes; data points are associated with the centers or thecorners of the resulting boxes. The value at a given point in the continuous statespace is computed as a weighted average of neighboring data points.1.1 MULTILINEAR INTERPOLATIONWhen using multilinear interpolation, data points are situated at the corners ofthe grid's boxes. The interpolated value within a box is an appropriately weightedaverage of the 2d datapoints on that box's corners. The weighting scheme assuresglobal continuity of the interpolated surface, and also guarantees that the interpo-lated value at any grid corner matches the given value of that corner.In one-dimensional space, multilinear interpolation simply involves piecewise linearinterpolations between the data points. In a higher-dimensional space, a recursive(though not terribly e�cient) implementation can be described as follows:� Pick an arbitrary axis. Project the query point along this axis to each of the twoopposite faces of the box containing the query point.� Use two (d � 1)-dimensional multilinear interpolations over the 2d�1 datapointson each of these two faces to calculate the values at both of these projected points.� Linearly interpolate between the two values generated in the previous step.Multilinear interpolation processes 2d data points for every query, which becomesprohibitively expensive as d increases.1.2 SIMPLEX-BASED INTERPOLATIONIt is possible to interpolate over d+1 of the data points for any given query in onlyO(d log d) time and still achieve a continuous surface that �ts the datapoints exactly.Each box is broken into d! hyperdimensional triangles, or simplexes, according tothe Coxeter-Freudenthal-Kuhn triangulation [Moore, 1992].Assume that the box is the unit hypercube, with one corner at (x1; x2; . . . ; xd) =(0;0; . . . ;0), and the diagonally opposite corner at (1;1; . . . ;1). Then, each simplexin the Kuhn triangulation corresponds to one possible permutation p of (1; 2; . . . ; d),and occupies the set of points satisfying the equation0 � xp(1) � xp(2) � . . . � xp(d) � 1:Triangulating each box into d! simplexes in this manner generates a conformal mesh:any two elements with a (d�1)-dimensional surface in common have entire faces incommon, which ensures continuity across element boundaries when interpolating.We use the Kuhn triangulation for interpolation as follows:� Translate and scale to a coordinate system in which the box containing thequery point is the unit hypercube. Let the new coordinate of the query pointbe (x01; . . . ; x0d).� Use a sorting algorithm to rank x01 through x0d. This tells us the simplex of theKuhn triangulation in which the query point lies.

� Express (x01; . . . ; x0d) as a convex combination of the coordinates of the relevantsimplex's (d + 1) corners.� Use the coe�cients determined in the previous step as the weights for a weightedsum of the data values stored at the corresponding corners.At no point do we explicitly represent the d! di�erent simplexes. All of the abovesteps can be performed in O(d) time except the second, which can be done inO(d log d) time using conventional sorting routines.2 PROBLEM DOMAINSCAR ON HILL: In the Hillcar domain, the goal is to park a car near the top ofa one-dimensional hill. The hill is steep enough that the driver needs to back up inorder to gather enough speed to get to the goal. The state space is two-dimensional(position,velocity). See [Moore and Atkeson, 1995] for further details, but notethat our formulation is harder than the usual formulation in that the goal regionis restricted to a narrow range of velocities around 0, and trials start at randomstates. The task is speci�ed by a reward of -1 for any action taken outside the goalregion, and 0 inside the goal. No discounting is used, and two actions are available:maximum thrust backwards, and maximum thrust forwards.ACROBOT: The Acrobot is a two-link planar robot acting in the vertical planeunder gravity with a weak actuator at its elbow joint joint. The shoulder is un-actuated. The goal is to raise the hand to at least one link's height above theunactuated pivot [Sutton, 1996]. The state space is four-dimensional: two angularpositions and two angular velocities. Trials always start from a stationary positionhanging straight down. This task is formulated in the same way as the car-on-the-hill. The only actions allowed are the two extreme elbow torques.3 APPLYING INTERPOLATION: THREE CASES3.1 CASE I: OFFLINE VALUE ITERATION WITH A KNOWNMODELFirst, we precalculate the e�ect of taking each possible action from each state cor-responding to a datapoint in the grid. Then, as suggested in [Gordon, 1995], we usethese calculations to derive a completely discrete MDP. Taking any action from anystate in this MDP results in c possible successor states, where c is the number ofdatapoints used per interpolation. Without interpolation, c is 1; with multilinearinterpolation, 2d; with simplex-based interpolation, d+ 1.We calculate the optimal policy for this derived MDP o�ine using value itera-tion [Ross, 1983]; because the value iteration can be performed on a completelydiscrete MDP, the calculations are much less computationally expensive than theywould have been with many other kinds of function approximators. The value it-eration gives us values for the datapoints of our grid, which we may then use tointerpolate the values at other states during online control.3.1.1 Hillcar Results: value iteration with known modelWe tested the two interpolation methods on a variety of quantization levels by�rst performing value iteration o�ine, and then starting the car from 1000 randomstates and averaging the number of steps taken to the goal from those states. Wealso recorded the number of backups required before convergence, as well as theexecution time required for the entire value iteration on a 85 MHz Sparc 5. SeeFigure 1 for the results. All steps-to-goal values are means with an expected errorof 2 steps.

Grid sizeInterpolation Method 112 212 512 3012None Steps to Goal: 237 131 133 120Backups: 2.42K 15.4K 156K 14.3MTime (sec): 0.4 1.0 4.1 192MultiLin Steps to Goal: 134 116 108 107Backups: 4.84K 18.1K 205K 17.8MTime (sec): 0.6 1.3 7.1 405Simplex Steps to Goal: 134 118 109 107Backups: 6.17K 18.1K 195K 17.9MTime (sec): 0.5 1.2 5.7 328Figure 1: Hillcar: value iteration with known modelGrid sizeInterpolation Method 84 94 104 114 124 134 144 154None Steps to Goal: - - 44089 - 26952 - > 100000 -Backups: - - 280K - 622K - 1.42M -Time (sec): - - 15 - 30 - 53 -MultiLin Steps to Goal: 3340 2006 1136 3209 1300 1820 1518 1802Backups: 233K 1.01M 730K 2.01M 2.03M 3.74M 4.45M 6.78MTime (sec): 17 43 42 83 99 164 197 284Simplex Steps to Goal: 4700 8007 2953 3209 4663 2733 1742 9613Backups: 196K 1.16M 590K 2.28M 1.62M 4.03M 3.65M 6.73MTime (sec): 9 24 22 47 47 86 93 142Figure 2: Acrobot: value iteration with known modelThe interpolated functions require more backups for convergence, but this is amplycompensated by dramatic improvement in the policy. Surprisingly, both interpola-tion methods provide improvements even at extremely high grid resolutions { thenoninterpolated grid with 301 datapoints along each axis fared no better than theinterpolated grids with only 21 datapoints along each axis(!).3.1.2 Acrobot Results: value iteration with known modelWe used the same value iteration algorithm in the acrobot domain. In this case ourtest trials always began from the same start state, but we ran tests for a larger setof grid sizes (Figure 2).Grids with di�erent resolutions place grid cell boundaries at di�erent locations, andthese boundary locations appear to be important in this problem | the perfor-mance varies unpredictably as the grid resolution changes. However, in all cases,interpolation was necessary to arrive at a satisfactory solution; without interpo-lation, the value iteration often failed to converge at all. With relatively coarsegrids it may be that any trajectory to the goal passes through some grid box morethan once, which would immediately spell disaster for any algorithm associating aconstant value over that entire grid box.Controllers using multilinear interpolation consistently fared better than those em-ploying the simplex-based interpolation; the smoother value function provided bymultilinear interpolation seems to help. However, value iteration with the simplex-based interpolation was about twice as fast as that with multilinear interpolation.In higher dimensions this speed ratio will increase.

3.2 CASE II: Q-LEARNINGUnder a second reinforcement learning paradigm, we do not use any model.Rather, we learn a Q-function that directly maps state-action pairs to long-termrewards [Watkins, 1989]. Does interpolation help here too?In this implementation we encourage exploration by optimistically initializing theQ-function to zero everywhere. After travelling a su�cient distance from our lastdecision point, we perform a single backup by changing the grid point values ac-cording to a perceptron-like update rule, and then we greedily select the action forwhich the interpolated Q-function is highest at the current state.3.2.1 Hillcar Results: Q-LearningWe used Q-Learning with a grid size of 112. Figure 3 shows learning curves forthree learners using the three di�erent interpolation techniques.Both interpolation methods provided a signi�cant improvement in both initial and�nal online performance. The learner without interpolation achieved a �nal aver-age performance of about 175 steps to the goal; with multilinear interpolation, 119;with simplex-based interpolation, 122. Note that these are all signi�cant improve-ments over the corresponding results for o�ine value iteration with a known model.Inaccuracies in the interpolated functions often cause controllers to enter cycles; be-cause the Q-learning backups are being performed online, however, the Q-learningcontroller can escape from these control cycles by depressing the Q-values in thevicinities of such cycles.3.2.2 Acrobot Results: Q-LearningWe used the same algorithms on the acrobot domain with a grid size of 154; resultsare shown in Figure 3.
-200000

-180000

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

0

0 50 100 150 200 250 300 350 400 450 500

C
um

ul
at

iv
e

S
um

 o
f R

ew
ar

ds

Number of Trials

No interpolation
Multilinear interpolation

Simplex-based interpolation

-2.5e+07

-2e+07

-1.5e+07

-1e+07

-5e+06

0

0 50 100 150 200 250 300 350 400

C
um

ul
at

iv
e

S
um

 o
f R

ew
ar

ds

Number of Trials

No interpolation
Multilinear interpolation

Simplex-based interpolationFigure 3: Left: Cumulative performance of Q-learning hillcar on an 112 grid. (Multilinearinterpolation comes out on top; no interpolation on the bottom.) Right: Q-learningacrobot on a 154 grid. (The two interpolations come out on top with nearly identicalperformance.) For each learner, the y-axis shows the sum of rewards for all trials to date.The better the average performance, the shallower the gradient. Gradients are alwaysnegative because each state transition before reaching the goal results in a reward of -1.Both Q-learners using interpolation improved rapidly, and eventually reached thegoal in a relatively small number of steps per trial. The learner using multilinearinterpolation eventually achieved an average of 1,529 steps to the goal per trial;the learner using simplex-based interpolation achieved 1,727 steps per trial. Onthe other hand, the learner not using any interpolation fared much worse, taking

an average of more than 27,000 steps per trial. (A controller that chooses actionsrandomly typically takes about the same number of steps to reach the goal.)Simplex-based interpolation provided on-line performance very close to that pro-vided by multilinear interpolation, but at roughly half the computational cost.3.3 CASE III: VALUE ITERATION WITH MODEL LEARNINGHere, we use a model of the system, but we do not assume that we have one to startwith. Instead, we learn a model of the system as we interact with it; we assume thismodel is adequate and calculate a value function via the same algorithms we woulduse if we knew the true model. This approach may be particularly bene�cial fortasks in which data is expensive and computation is cheap. Here, models are learnedusing very simple grid-based function approximators without interpolation for boththe reward and transition functions of the model. The same grid resolution is usedfor the value function grid and the model approximator. We strongly encourageexploration by initializing the model so that every state is initially assumed to bean absorbing state with zero reward.While making transitions through the state space, we update the model and useprioritized sweeping [Moore and Atkeson, 1993] to concentrate backups on relevantparts of the state space. We also occasionally stop to recalculate the e�ects ofall actions under the updated model and then run value iteration to convergence.As this is fairly time-consuming, it is done rather rarely; we rely on the updatesperformed by prioritized sweeping to guide the system in the meantime.
-100000

-90000

-80000

-70000

-60000

-50000

-40000

-30000

-20000

-10000

0

0 50 100 150 200 250 300 350 400 450 500

C
um

ul
at

iv
e

S
um

 o
f R

ew
ar

ds

Number of Trials

No interpolation
Multilinear interpolation

Simplex-based interpolation

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

0

0 50 100 150 200 250 300 350 400

C
um

ul
at

iv
e

S
um

 o
f R

ew
ar

ds

Number of Trials

No interpolation
Multilinear interpolation

Simplex-based interpolationFigure 4: Left: Cumulative performance, model-learning on hillcar with a 112 grid.Right: Acrobot with a 154 grid. In both cases, multilinear interpolation comes out ontop, while no interpolation winds up on the bottom.3.3.1 Hillcar Results: value iteration with learned modelWe used the algorithm described above with an 11-by-11 grid. An average of abouttwo prioritized sweeping backups were performed per transition; the complete re-calculations were performed every 1000 steps throughout the �rst two trials andevery 5000 steps thereafter. Figure 4 shows the results for the �rst 500 trials.Over the �rst 500 trials, the learner using simplex-based interpolation didn't faremuch better than the learner using no interpolation. However, its performanceon trials 1500-2500 (not shown) was close to that of the learner using multilinearinterpolation, taking an average of 151 steps to the goal per trial while the learnerusing multilinear interpolation took 147. The learner using no interpolation didsigni�cantly worse than the others in these later trials, taking 175 steps per trial.

The model-learners' performance improved more quickly than the Q-learners' overthe �rst few trials; on the other hand, their �nal performance was signi�cantly worsethat the Q-learners'.3.3.2 Acrobot Results: value iteration with learned modelWe used the same algorithm with a 154 grid on the acrobot domain, this timeperforming the complete recalculations every 10000 steps through the �rst two trialsand every 50000 thereafter. Figure 4 shows the results. In this case, the learnerusing no interpolation took so much time per trial that the experiment was abortedearly; after 100 trials, it was still taking an average of more than 45,000 stepsto reach the goal. The learners using interpolation, however, fared much better.The learner using multilinear interpolation converged to a solution taking 938 stepsper trial; the learner using simplex-based interpolation averaged about 2450 steps.Again, as the graphs show, these three learners initially improve signi�cantly fasterthan did the Q-Learners using similar grid sizes.4 CONCLUSIONSWe have shown how two interpolation schemes|one based on a weighted average ofthe 2d points in a square cell, the other on a d- dimensional triangulation|may beused in three reinforcement learning paradigms: Optimal policy computation witha known model, Q-learning, and online value iteration while learning a model. Ineach case our empirical studies demonstrate interpolation resoundingly decreasingthe quantization level necessary for a satisfactory solution. Future extensions ofthis research will explore the use of variable resolution grids and triangulations,multiple low-dimensional interpolations in place of one high-dimension interpolationin a manner reminiscent of CMAC [Albus, 1981], memory-based approximators, andmore intelligent exploration.This research was funded in part by a National Science Foundation Graduate Fellowship to Scott Davies,and a Research Initiation Award to Andrew Moore.References[Albus, 1981] J. S. Albus. Brains, Behaviour and Robotics. BYTE Books, McGraw-Hill, 1981.[Boyan and Moore, 1995] J. A. Boyan and A. W. Moore. Generalization in Reinforcement Learning:Safely Approximating the Value Function. In Neural Information Processing Systems 7, 1995.[Crites and Barto, 1996] R. H. Crites and A. G. Barto. Improving Elevator Performance using Rein-forcement Learning. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Neural InformationProcessing Systems 8, 1996.[Gordon, 1995] G. Gordon. Stable Function Approximation in Dynamic Programming. In Proceedingsof the 12th International Conference on Machine Learning. Morgan Kaufmann, June 1995.[Moore and Atkeson, 1993] A. W. Moore and C. G. Atkeson. Prioritized Sweeping: ReinforcementLearning with Less Data and Less Real Time. Machine Learning, 13, 1993.[Moore and Atkeson, 1995] A. W. Moore and C. G. Atkeson. The Parti-game Algorithm for VariableResolution Reinforcement Learning in Multidimensional State-spaces. Machine Learning, 21, 1995.[Moore, 1992] D. W. Moore. Simplical Mesh Generation with Applications. PhD. Thesis. Report no.92-1322, Cornell University, 1992.[Ross, 1983] S. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, New York,1983.[Sutton, 1988] R. S. Sutton. Learning to Predict by the Methods of Temporal Di�erences. MachineLearning, 3:9{44, 1988.[Sutton, 1996] R. S. Sutton. Generalization in Reinforcement Learning: Successful Examples UsingSparse Coarse Coding. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Neural InformationProcessing Systems 8, 1996.[Tesauro, 1991] G. J. Tesauro. Practical Issues in Temporal Di�erence Learning. RC 17223 (76307),IBM T. J. Watson Research Center, NY, 1991.[Watkins, 1989] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD. Thesis, King's College,University of Cambridge, May 1989.

