
Interpolating Conditional Density Trees
Sott Davies and Andrew MooreShool of Computer SieneCarnegie Mellon UniversityPittsburgh, PA 15213[sottd, awm℄�s.mu.eduAbstratJoint distributions over many variables arefrequently modeled by deomposing theminto produts of simpler, lower-dimensionalonditional distributions, suh as in sparselyonneted Bayesian networks. However, au-tomatially learning suh models an be veryomputationally expensive when there aremany datapoints and many ontinuous vari-ables with omplex nonlinear relationships,partiularly when no good ways of deom-posing the joint distribution are known a pri-ori. In suh situations, previous researh hasgenerally foused on the use of disretizationtehniques in whih eah ontinuous vari-able has a single disretization that is usedthroughout the entire network.In this paper, we present and ompare a widevariety of tree-based algorithms for learningand evaluating onditional density estimatesover ontinuous variables. These trees anbe thought of as disretizations that vary a-ording to the partiular interations beingmodeled; however, the density within a givenleaf of the tree need not be assumed on-stant, and we show that suh nonuniform leafdensities lead to more aurate density esti-mation. We have developed Bayesian net-work struture-learning algorithms that em-ploy these tree-based onditional density rep-resentations, and we show that they an beused to pratially learn omplex joint prob-ability models over dozens of ontinuous vari-ables from thousands of datapoints. We fouson �nding models that are simultaneously a-urate, fast to learn, and fast to evaluate onethey are learned.

1 INTRODUCTIONBayesian networks are a popular method for represent-ing joint probability distributions over many variables.A Bayesian network ontains a direted ayli graphG with one vertex Vi in the graph for eah variable Xiin the domain. The direted edges in the graph speifya set of independene relationships between the vari-ables. De�ne ~�i to be the set of variables whose nodesin the graph are \parents" of Vi. The set of inde-pendene relationships spei�ed by G is then as fol-lows: given the values of ~�i but no other information,Xi is onditionally independent of all variables orre-sponding to nodes that are not Vi's desendants in thegraph. These independene relationships allows us todeompose the joint probability distribution P ( ~X) asP ( ~X) = QNi=1 P (Xij ~�i), where N is the number ofvariables in the domain. Thus, if in addition to G wealso speify P (Xij ~�i) for every variable Xi, then wehave spei�ed a valid probability distribution P ( ~X)over the entire domain.Bayesian networks are most ommonly used in sit-uations where all the variables are disrete; if on-tinuous variables are modeled at all, they are typ-ially assumed to follow simple parametri distri-butions suh as Gaussians (e.g. (Hekerman andGeiger, 1995)). Some researhers have reently in-vestigated the use of omplex ontinuous distributionswithin Bayesian networks; for example, weighted sumsof Gaussians (Driver and Morrell, 1995), Gaussiankernel-based density estimators (Hofmann and Tresp,1995), and Gaussian proesses (Friedman and Nah-man, 2000) have been used to approximate onditionalprobability density funtions. Suh omplex distribu-tions over ontinuous variables are usually quite om-putationally expensive to learn. This expense may notbe too problemati if an appropriate Bayesian networkstruture is known beforehand. On the other hand, ifthe dependenies between variables are not known apriori and the struture must be learned from data,



then the number of onditional distributions that mustbe learned and tested while a struture-learning algo-rithm searhes for a good network an beome unman-ageably large.In suh ases, the searh over network strutures isusually performed using a disretized version of thedata, where the range of eah variable is dividedinto some number of bins and all values of a givenvariable within a given bin are onsidered equiva-lent. This disretization an performed one beforenetwork struture-learning, and the resulting networkstruture an then be reparameterized with ontinu-ous distributions in a �nal step ((Monti and Cooper,1998b), (Monti and Cooper, 1999)); or, a simultane-ous searh of both network strutures and disretiza-tion poliies an be performed ((Friedman and Gold-szmidt, 1996a), (Monti and Cooper, 1998a)). In thisprevious researh, however, the disretization of eahvariable has been global { that is, the same disretiza-tion for any partiular variable is employed for all theinterations in whih it is involved.Deision trees (see e.g. (Quinlan, 1986), (Breimanet al., 1984)) have been used previously in Bayesiannetworks over disrete variables (Friedman and Gold-szmidt, 1996b) in ases where full onditional ontin-geny tables ould be too large to learn auratelyfrom limited data. In this paper, we propose and eval-uate four di�erent tree-based approahes to the ondi-tional density estimation of ontinuous variables, withdi�erent tradeo�s between auray, learning speed,and evaluation speed:� CART(Breiman et al., 1984)-like trees, whih arefast to learn and evaluate but are inadequate foraurately representing omplex onditional dis-tributions.� Strati�ed onditional density trees, whih aremore omputationally expensive to learn thanCART-like trees but are still fast to evaluateand are better than CART-like trees at general-purpose density estimation.� Joint density trees that are used onditionally.These are fast to learn, and (somewhat surpris-ingly) appear more aurate than strati�ed ondi-tional density trees. Unfortunately, they are om-putationally expensive to evaluate.� Approximately onditionalized joint density trees,whih ombine the best features of the previousthree tree types in that they are fast to learn, fastto evaluate, and aurate at density estimation.In Setions 2.1- 2.7, we explain, ompare and on-trast these four di�erent types of trees, and provide
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1Figure 1: An example of a onditional density tree(or lassi�ation tree) for prediting the distributionof a binary variable X as a funtion of several othervariables.experimental results on real and syntheti datasets inwhih we keep the set of onditional distributions be-ing modeled onstant. In Setion 2.8, we briey dis-uss a Bayesian network struture-learning algorithmthat employs these trees, and show that the resultingoverall algorithm an pratially �nd aurate fatoredmodels that are also fast to evaluate, ompared toglobal mixture model-learning algorithms suh as Au-toClass. Finally, in Setion 3 we summarize our �nd-ings and disuss possible avenues for future researh.2 TREE AND LEAF TYPES2.1 Classi�ation and regression treesFigure 1 shows an example deision tree in whih thedistribution of a binary variable X is predited as afuntion of several other variables, some of whih aredisrete (the Q's) and some of whih are ontinuous(the C's). To �nd the distribution of X , the predi-tion algorithm simply starts at the root of the tree(shown at the top of our diagram) and follows a pathdown the tree's branhes aording to the values ofthe other variables until it reahes a leaf. For exam-ple, if the ontinuous variable C4 is less than .5, andthe trinary disrete variable Q1 has a value of 1, thenthe algorithm would predit that X has a 30% haneof taking on its �rst possible value and a 70% haneof its seond. Suh deision trees for prediting thedistributions of disrete variables are also known as\lassi�ation trees" in ontexts where the task ulti-mately involves guessing a single value (typially themost likely value) for the variable being predited.Regression trees (e.g. (Breiman et al., 1984)) havestrutures similar to those of deision trees, but theleaves of these trees provide information about the dis-tributions of a ontinuous variable X instead. Typi-ally in regression this information is restrited to apoint estimate of the variable's mean; this mean may



be onstant, or it may be (for example) a linear fun-tion of the parent variables. In order to obtain anatual density estimate, a variane an be supplied aswell as the mean in order to speify the parameters ofa Gaussian.Deision and regression trees are typially learned bygreedy top-down divide-and-onquer algorithms; weemploy suh an algorithm in the experiments desribedin this paper. A deision or regression \stump" ofdepth one is grown for eah possible branhing vari-able. The algorithm then hooses the branh vari-able whose orresponding stump most inreased thetotal onditional log-likelihoods of a randomly seletedsubset of the training data that was held out duringthe stump-training proess. The algorithm then re-ursively learns the branh node's hildren using theappropriate subsets of the training data. When split-ting on a disrete variable, the resulting branh alwayshas one hild for every possible value of the branhvariable; when splitting on a ontinuous variable, thebranh has two hildren orresponding to whether thevariable is � or > the midpoint of the urrent pos-sible subrange for that variable. (The algorithm isinitially provided with a hyperube over the ontin-uous variables in whih all nonzero probability is as-sumed to lie.) Branhing is terminated when fewerthan ten training datapoints are onsistent with theurrent subtree. A separate random holdout set of thetraining data is then used to prune the learned dei-sion tree. Many variations of this learning algorithmare onsidered in the full version of this paper (Davies,2002).Regression trees may be adequate for representing on-tinuous onditional distributions in situations wherethey are in fat near-Gaussian, or when the probleminvolves guessing a point estimate and then being pe-nalized by its squared distane to the real value. How-ever, there are other situations in whih we may wishto have reasonably aurate models of distributionsthat are more ompliated, e.g. multimodal. Thereare many possible riteria to use when judging the a-uray of suh models; one of the most ommon isthe Kullbak-Leibler divergene of the model from thetrue distribution. Sine we will be learning modelsfrom sienti� data with unknown true distributionsin our evaluations, we will use the log-likelihoods oftest sets in ross-validation experiments as empirialanalogues of the KL divergene.2.2 Strati�ed onditional density treesThere is no reason in priniple to stop at a simpleparametri distribution for the hild variable one thebranhing on parent (i.e. \input") variables has �n-ished. Instead, one an employ a strati�ed onditional
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eah leaf is distributed with uniform density, then thestrati�ed onditional density tree is essentially employ-ing variable-resolution histograms in plae of the sim-ple parametri distributions (suh as Gaussians) thatCART-like trees use. However, most other hoies (asmentioned in Setion 2.5) lead to more aurate den-sity estimation.2.3 Using joint density trees onditionallyWhile the strati�ed onditional density trees disussedin the previous setion an model onditional densitytrees muh more aurately than CART-like single-level onditional density trees, they are omputation-ally expensive to learn. There are many heuristis thatould be tried to alleviate this problem, suh as learn-ing a CART-like tree �rst and using this tree's stru-ture as a starting point for a strati�ed onditional den-sity tree. However, suh heuristis would be unlikelyto inrease the auray of the resulting models, andlikely to derease it. As it turns out, it is possible toahieve more aurate density estimation and fasterlearning using an alternative approah.In this setion we disuss the use of density treesmodeling joint distributions P (Xi; ~�i) to obtain ondi-tional density estimates P (Xij ~�i). Eah leaf l of suha tree spei�es a joint probability P (Xi; ~�ijl): that is,the probability that Xi and ~�i take on spei� valueswithin the leaf's range, given that the datapoint liessomewhere within the bounds of l. Assuming we havea density tree representing P (Xi; ~�i), we an obtainan estimate for a partiular P (xij~�i) as follows:P (xij~�i) = Xl P (lj~�i) � P (xij~�i; l)= Xl P (l) � P (~�ijl)Pl0 P (l0) � P (~�ijl) � P (xij~�i; l)= P (l) � P (~�ijl) � P (xij~�i; l)Pl0 P (l0) � P (~�ijl0)where the summation over l ollapses to a single leafl onsistent with both xi and ~�i, sine all other leavesl have either P (~�ijl) or P (xij~�i; l) equal to zero. Thisequation gives us a simple way of alulating on-ditional distributions P (Xij ~�i) from trees modelingjoint distributions P (Xi; ~�i), assuming the distribu-tion P (Xi; ~�ijl) within eah leaf l an be marginalizedto ompute P ( ~�ijL) and onditionalized to omputeP (Xij ~�i; L).The algorithm we use to learn joint density trees ofthis form is idential to the learning algorithm we usefor deision / regression trees, exept the joint densitytree learning algorithm treats Xi and ~� on equal foot-ing: either Xi or a variable in ~�i an be tested at any

partiular branh node, and the joint log-likelihoodsof all the variables in fXig [ ~�i are used for evaluat-ing any partiular branh hoie rather than just theonditional log-likelihood of Xi.Joint density trees are trivially apable of represent-ing Bayesian lassi�ers when used onditionally in thismanner. In partiular, sine eah leaf in the densitytrees employed in this paper models eah disrete vari-able independently of all other variables (using a multi-nomial distribution), a Naive Bayes lassi�er for dis-rete variables is obtained in the speial ase wherethe density tree is a one-level density stump with aroot node branhing on the variable to be predited.Suh Naive Bayes lassi�ers have previously been usedto model the onditional distributions within Bayesiannetworks (Hekerman and Meek, 1997). A ommonlyused Bayesian lassi�er for ontinuous variables is tomodel eah lass distribution with a Gaussian; thislassi�er is obtained simply with a density stumpbranhing on the lass variable with leaves employ-ing Gaussian distributions over the ontinuous vari-ables. More generally, suppose a joint density treeover disrete variables has a branh struture similarto the branh struture of a strati�ed onditional den-sity tree: that is, one the output variable is testedin a branh node, no further tests an be performedon the input variables in subsequent levels of the tree.When this joint density tree is used to estimate ondi-tional distributions for the output variable, it is sim-ilar in form and funtion to a hybrid deision tree /Naive Bayesian lassi�er also developed in previous re-searh (Kohavi, 1996). In the most general ase whenthe tree has an arbitrary branh struture (and thevariables are not neessarily disrete), the algorithmfor omputing onditional distributions essentially re-ates a Bayesian lassi�er \on the y" aross di�erentparts of the tree to determine whih of the leaves on-sistent with ~�i the datapoint probably ame from.Somewhat surprisingly, our experimental results showthat learning joint density trees and then using themonditionally in this manner frequently leads to moreaurate onditional density estimation than the morediret approah of learning and using strati�ed ondi-tional density trees. One possible explanation of thisphenomenon is disussed briey at the end of the nextsetion.2.4 Approximately onditionalized jointdensity treesThe joint density trees disussed in the previous se-tion an be learned quikly and they appear to be atleast as aurate as strati�ed onditional density treesin our experiments. However, they are omputation-ally expensive to use, sine evaluating the denominator



Pl0 P (l0) � P (~�ijl0) requires traversing the tree �ndingall leaves onsistent with the known value of ~�i.If the lass of density funtions used in the leavesis losed under addition and salar multipliation,then we an take a density tree modeling P (Xi; ~�i)and preompute a marginalized density tree P ( ~�i).Suh a marginalization algorithm for density treeswith onstant-density leaves has been used in previouswork by Kozlov and Koller on message-passing algo-rithms for inferene in ontinuous-variable graphialmodels (Kozlov and Koller, 1997). One this tree isomputed, we an ompute the onditional distribu-tion simply as P (Xij ~�i) = P (Xi; ~�i)P ( ~�i) , where omputingthe numerator and omputing the denominator eahrequire loating and evaluating only one leaf distri-bution in the appropriate tree. Unfortunately, manyuseful leaf density estimators are not losed under ad-dition, inluding those that have fatored nonuniformdistributions over multiple variables. Marginalizingtrees with suh leaves results in a marginalized treewhose leaves ontain mixture distributions with manyomponents, and evaluating these leaves an take a sig-ni�ant amount of omputational time. Furthermore,for some operations we might wish to perform withdensity trees, suh as sampling or ompression, beingable to ompute P (Xij ~�i) as a quotient of two blak-box funtions is not partiularly helpful. Suh oper-ations are muh more naturally performed in termsof leaf probabilities P (Lj ~�i) and leaf-dependent on-ditional probabilities P (XijL; ~�i). (For example, sup-pose we have an algorithm apable of generating a ran-dom sample from a Gaussian distribution. It is simpleto use this routine to generate a random sample froma mixture of Gaussians { �rst, we randomly hoose themixture omponent, and then we generate a randomsample from the orresponding Gaussian distribution.On the other hand, it is not so straightforward to useit to generate a random sample from a distributionrepresented as a quotient of two Gaussian mixtures.)However, in suh situations we an still speed up theevaluation of onditional probabilities by reating anauxiliary tree in whih eah leaf ontains a pointer toa single leaf of the original density tree. This auxiliarytree has the same struture as a strati�ed onditionaldensity tree in that all branhing on the parent vari-ables is performed �rst, after whih all branhing ison the hild variable. We reate the auxiliary tree'sstruture by �rst using a marginalization algorithmsimilar to that employed by Kozlov and Koller. Thismarginalization algorithm produes a tree in whih allbranhes over Xi have been removed, and whih on-tains one leaf for every distint possible ombinationof leaves in the original tree that an be onsistentwith any single ~�i. We then reursively re�ne eah
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(as before) and �s is a onstant. (An alternative wouldbe to ompute �s diretly as the average of P (lj~�i)over the datapoints onsistent with ts's onstraints;however, this appears to not work quite as well empir-ially.) When we use a onditionalized joint densitytree in this manner, we refer to it as an approximatelyonditionalized joint density tree.If eah leaf of the original joint tree employs a nonuni-form distribution over the parent variables, then ob-taining the onditional distribution P (Xij~�i) from ajoint tree using the relationshipP (xij~�i) =Xl P (lj~�i) � P (xij~�i; l)an atually result in more aurate onditional den-sity estimation than possible with strati�ed ondi-tional density trees, even though the joint density treesare optimized for joint probabilities rather than on-ditional probabilities. Intuitively, by ombining thedistributions learned in di�erent leaves using this re-lationship, we have essentially reated a \soft branh"over ~�i that helps us to more aurately predit Xi asa funtion of ~�i without atually splitting the datasetfurther into ompletely disjoint subsets. In fat, as ourexperimental results will show, onditionalized jointdensity trees an atually provide more aurate es-timates than strati�ed onditional density trees evenwhen the onditionalized joint density trees are usedapproximately, i.e., even when the \soft branhing"oeÆients �s are �xed as onstants.2.5 Leaf typesIn all of our experiments, eah leaf represents the dis-tribution of eah disrete variable as a multinomial dis-tribution independent of all other variables. However,we have experimented with a wide variety of distri-butions with whih to represent the densities of on-tinuous variables within eah density tree leaf: on-stant (i.e. uniform) densities; Gaussians with diago-nal ovariane matries or general ovariane matries(renormalized so our onditional distributions alwaysintegrate to one); exponential distributions; and linearand multilinear distributions. Spae restritions pre-vent us from disussing all of these possibilities here;see (Davies, 2002) for further detail. Of these, linearand multilinear interpolation appear empirially to bethe best density approximators for use in the leavesof strati�ed onditional density trees and onditional-ized joint density trees, with multilinear interpolationbeing slightly more aurate than linear interpolationbut also more omputationally expensive. With lin-ear interpolation, eah ontinuous variable is modeledindependently, and its density varies linearly withineah leaf. With multilinear interpolation, the d on-

tinuous variables are modeled jointly by interpolatingbetween 2d densities assoiated with the orners of theleaf's bounding hyperbox. In both ases, eah distri-bution to �t is expressed as a mixture model and then�t with the EM algorithm (Dempster et al., 1977) tomaximize the log-likelihood of the training data. Be-ause the distribution of eah mixture omponent is�xed and only the prior probabilities of the mixtureomponents are adjusted, EM an be performed rela-tively quikly | and the log-likelihood is onvex, sothere are no suboptimal loal maxima for EM to gettrapped in. In order to keep leaf-learning reasonablyfast at the higher levels of the tree where many dat-apoints lie in eah andidate leaf, we restrit the EMalgorithm to using at most 25 � 2d datapoints to �tany d-dimensional multilinear distribution, or at most25 � 2 � d datapoints to �t any d-dimensional inde-pendent linear interpolation. Furthermore, we restritEM to run for at most 10 iterations. Experiments notdesribed in this paper have shown that this subsam-pling and this limitation on the number of iterationshave a negligible e�et on the auray of the resultingdensity estimator.2.6 SmoothingThe tree-learning algorithms we employ are generallyoriented towards maximizing the log-likelihood of thedata | either just of Xi in the ase of CART-like andstrati�ed onditional density trees, or of fXig [ ~�i inthe ase of joint density trees. If we are using test-set log-likelihood as our riterion for density estimatorquality, suh maximum-likelihood estimates an per-form arbitrarily poorly. Rather than attempt a om-plex fully Bayesian solution to the problem, we relyon a ommonly used and simpler tehnique for work-ing around it: namely, we adjust the overall distri-bution slightly towards the uniform distribution in anad-ho fashion. For simpliity, we assume some bound-ing box is known a priori for the ontinuous variables.See (Davies, 2002) for details and a disussion of howto handle other senarios.2.7 Experimental resultsIn this setion we ompare the auray of the four treetypes desribed above on a simple syntheti datasetand on two large sienti� datasets. The \Conneted"syntheti dataset was generated by sampling 80,000datapoints from a mixture of Gaussians in two di-mensions. The \Bio" dataset ontains data from ahigh-throughput biologial ell assay. There are 12,671reords and 31 variables. 26 of the variables are on-tinuous; the other �ve are disrete. Eah disrete vari-able an take on either two or three di�erent possiblevalues. The \Astro" dataset ontains data taken from



the Sloan Digital Sky Survey, an extensive astronomi-al survey urrently in progress. This dataset ontains111,456 reords and 68 variables. 65 of the variablesare ontinuous; the other three are disrete, with ari-ties ranging from three to 81. See the full version of thepaper (Davies, 2002) for further experiments on addi-tional syntheti datasets, on other modi�ations of thesienti� datasets, and with many other variations ofthe learning algorithms.Two minor adjustments were made to eah of the si-enti� datasets before handing them to any of ourlearning algorithms. First, all ontinuous variableswere saled so that all values lie within [0; 1℄. Thishelps put the log-likelihoods we report in ontext, andpossibly helps prevent problems with limited mahineoating-point representation. Seond, the value ofeah ontinuous value in the dataset were randomlyperturbed by adding noise to it | either uniform noisewith a range of .001, or Gaussian noise with a standarddeviation of .001. This noise was added to eliminateany deterministi relationships or delta funtions inthe data. The log-likelihood of a ontinuous datasetexhibiting even a single deterministi relationship be-tween two variables is in�nite when given the orretmodel; in suh a situation, it is not lear how mean-ingful log-likelihood omparisons between ompetinglearning algorithms would be. Adding two di�erentkinds of noise also allows us to hek how sensitive thealgorithms' relative performanes are to variations inthe small-sale details of the datasets.Figure 4 shows a sample of our experimental resultsfor CART-like vs. strati�ed onditional density trees.Two di�erent kinds of leaf types are shown for theCART-like trees: Gaussians with onstant means, andGaussians in whih the mean is a linear funtion ofthe parent variables as determined by linear regres-sion. For strati�ed onditional density trees we showresults for uniform-density leaves in addition to thesetwo previous leaf types. A 10-fold ross-validation isperformed; we show the mean of the log-likelihoods ofthe test sets, as well as its empirially estimated 95%on�dene interval. The best algorithm for a givendataset is shown in bold italis, as well as all othersthat are not worse than it with at least 95% on�-dene aording to a Student's t-test. In the ase ofthe syntheti \Conneted" dataset, the task is sim-ply to model the onditional distribution of one vari-able given the other; in the ase of the two sienti�datasets, the task is to model the joint distributionover all the variables using a Bayesian network witha �xed struture. (These strutures had been learnedautomatially in previous work (Davies and Moore,2000)). The results show that strati�ed onditionaldensity trees model the distributions muh more au-
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Figure 4: Auraies and learning times for CART-likevs. strati�ed density trees.rately. This is unsurprising in the ase of the syn-theti dataset, whih was generated to have multi-modal onditional distributions; however, it is inter-esting to note that the sienti� datasets also ontainomplex onditional distributions not adequately ap-tured by CART-like onditional density trees. Unfor-tunately, strati�ed onditional density trees are alsomuh more omputationally expensive to learn; in thease of the Astro dataset, the experiment for strati�edonditional density trees employing linear regressionin the leaves was aborted beause it would have takenseveral CPU-days to omplete. (We omit the resultsfor the sienti� datasets with uniform noise addedrather than Gaussian; however, they are qualitativelysimilar.)Figure 5 shows some of our experimental results om-paring strati�ed onditional density trees vs. variousforms of joint density trees. Two di�erent leaf distribu-tions are shown for eah tree type: uniform, and inde-pendent linear interpolations for eah variable (\ILI").These results illustrate several important trends:� Using interpolating distributions within the leavesimproves auray over uniform distributions.� Joint density trees with interpolating leaves aremore aurate than strati�ed onditional densitytrees, and are fast to learn. Unfortunately, they'remuh more expensive to evaluate.� Approximately onditionalized joint density treesare still more aurate than strati�ed onditionaldensity trees, but are muh faster to learn andabout as fast to evaluate. Thus, these approxi-
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Figure 5: Strati�ed vs. Joint vs. Approximately Con-ditionalized Joint density trees.mately onditionalized joint density trees ombinethe best features of the three other tree types.Similar results are obtained for other synthetidatasets and for the sienti� datasets with Gaussiannoise added (Davies, 2002).2.8 Learning Bayesian Network Strutureswith Interpolating Conditional DensityTreesWe have developed an iterative Bayesian networkstruture-learning algorithm apable of using di�erentkinds of density trees for three di�erent phases of thelearning task. This algorithm is somewhat similar inspirit to the Sparse Candidate algorithm for learningnetwork strutures over disrete variables (Friedmanet al., 1999), and an be seen as a heuristi approxima-tion of steepest-asent hill-limbing in order to make itomputationally feasible. Up to three di�erent kindsof density trees may be used for three di�erent partsof the algorithm:� Fast-to-learn but relatively inaurate trees anbe used to oasionally reompute \steepness" es-timates in network struture searh spae, i.e.,whih ar additions and removals seem promising.� Medium-quality trees an be used to ompare anew andidate network struture with the bestpreviously found network struture.� Expensive, high-quality density trees an be usedfor the �nal network parameterization after apromising network struture has been settledupon.
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