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tJoint distributions over many variables arefrequently modeled by de
omposing theminto produ
ts of simpler, lower-dimensional
onditional distributions, su
h as in sparsely
onne
ted Bayesian networks. However, au-tomati
ally learning su
h models 
an be very
omputationally expensive when there aremany datapoints and many 
ontinuous vari-ables with 
omplex nonlinear relationships,parti
ularly when no good ways of de
om-posing the joint distribution are known a pri-ori. In su
h situations, previous resear
h hasgenerally fo
used on the use of dis
retizationte
hniques in whi
h ea
h 
ontinuous vari-able has a single dis
retization that is usedthroughout the entire network.In this paper, we present and 
ompare a widevariety of tree-based algorithms for learningand evaluating 
onditional density estimatesover 
ontinuous variables. These trees 
anbe thought of as dis
retizations that vary a
-
ording to the parti
ular intera
tions beingmodeled; however, the density within a givenleaf of the tree need not be assumed 
on-stant, and we show that su
h nonuniform leafdensities lead to more a

urate density esti-mation. We have developed Bayesian net-work stru
ture-learning algorithms that em-ploy these tree-based 
onditional density rep-resentations, and we show that they 
an beused to pra
ti
ally learn 
omplex joint prob-ability models over dozens of 
ontinuous vari-ables from thousands of datapoints. We fo
uson �nding models that are simultaneously a
-
urate, fast to learn, and fast to evaluate on
ethey are learned.

1 INTRODUCTIONBayesian networks are a popular method for represent-ing joint probability distributions over many variables.A Bayesian network 
ontains a dire
ted a
y
li
 graphG with one vertex Vi in the graph for ea
h variable Xiin the domain. The dire
ted edges in the graph spe
ifya set of independen
e relationships between the vari-ables. De�ne ~�i to be the set of variables whose nodesin the graph are \parents" of Vi. The set of inde-penden
e relationships spe
i�ed by G is then as fol-lows: given the values of ~�i but no other information,Xi is 
onditionally independent of all variables 
orre-sponding to nodes that are not Vi's des
endants in thegraph. These independen
e relationships allows us tode
ompose the joint probability distribution P ( ~X) asP ( ~X) = QNi=1 P (Xij ~�i), where N is the number ofvariables in the domain. Thus, if in addition to G wealso spe
ify P (Xij ~�i) for every variable Xi, then wehave spe
i�ed a valid probability distribution P ( ~X)over the entire domain.Bayesian networks are most 
ommonly used in sit-uations where all the variables are dis
rete; if 
on-tinuous variables are modeled at all, they are typ-i
ally assumed to follow simple parametri
 distri-butions su
h as Gaussians (e.g. (He
kerman andGeiger, 1995)). Some resear
hers have re
ently in-vestigated the use of 
omplex 
ontinuous distributionswithin Bayesian networks; for example, weighted sumsof Gaussians (Driver and Morrell, 1995), Gaussiankernel-based density estimators (Hofmann and Tresp,1995), and Gaussian pro
esses (Friedman and Na
h-man, 2000) have been used to approximate 
onditionalprobability density fun
tions. Su
h 
omplex distribu-tions over 
ontinuous variables are usually quite 
om-putationally expensive to learn. This expense may notbe too problemati
 if an appropriate Bayesian networkstru
ture is known beforehand. On the other hand, ifthe dependen
ies between variables are not known apriori and the stru
ture must be learned from data,



then the number of 
onditional distributions that mustbe learned and tested while a stru
ture-learning algo-rithm sear
hes for a good network 
an be
ome unman-ageably large.In su
h 
ases, the sear
h over network stru
tures isusually performed using a dis
retized version of thedata, where the range of ea
h variable is dividedinto some number of bins and all values of a givenvariable within a given bin are 
onsidered equiva-lent. This dis
retization 
an performed on
e beforenetwork stru
ture-learning, and the resulting networkstru
ture 
an then be reparameterized with 
ontinu-ous distributions in a �nal step ((Monti and Cooper,1998b), (Monti and Cooper, 1999)); or, a simultane-ous sear
h of both network stru
tures and dis
retiza-tion poli
ies 
an be performed ((Friedman and Gold-szmidt, 1996a), (Monti and Cooper, 1998a)). In thisprevious resear
h, however, the dis
retization of ea
hvariable has been global { that is, the same dis
retiza-tion for any parti
ular variable is employed for all theintera
tions in whi
h it is involved.De
ision trees (see e.g. (Quinlan, 1986), (Breimanet al., 1984)) have been used previously in Bayesiannetworks over dis
rete variables (Friedman and Gold-szmidt, 1996b) in 
ases where full 
onditional 
ontin-gen
y tables 
ould be too large to learn a

uratelyfrom limited data. In this paper, we propose and eval-uate four di�erent tree-based approa
hes to the 
ondi-tional density estimation of 
ontinuous variables, withdi�erent tradeo�s between a

ura
y, learning speed,and evaluation speed:� CART(Breiman et al., 1984)-like trees, whi
h arefast to learn and evaluate but are inadequate fora

urately representing 
omplex 
onditional dis-tributions.� Strati�ed 
onditional density trees, whi
h aremore 
omputationally expensive to learn thanCART-like trees but are still fast to evaluateand are better than CART-like trees at general-purpose density estimation.� Joint density trees that are used 
onditionally.These are fast to learn, and (somewhat surpris-ingly) appear more a

urate than strati�ed 
ondi-tional density trees. Unfortunately, they are 
om-putationally expensive to evaluate.� Approximately 
onditionalized joint density trees,whi
h 
ombine the best features of the previousthree tree types in that they are fast to learn, fastto evaluate, and a

urate at density estimation.In Se
tions 2.1- 2.7, we explain, 
ompare and 
on-trast these four di�erent types of trees, and provide
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onditional density tree(or 
lassi�
ation tree) for predi
ting the distributionof a binary variable X as a fun
tion of several othervariables.experimental results on real and syntheti
 datasets inwhi
h we keep the set of 
onditional distributions be-ing modeled 
onstant. In Se
tion 2.8, we brie
y dis-
uss a Bayesian network stru
ture-learning algorithmthat employs these trees, and show that the resultingoverall algorithm 
an pra
ti
ally �nd a

urate fa
toredmodels that are also fast to evaluate, 
ompared toglobal mixture model-learning algorithms su
h as Au-toClass. Finally, in Se
tion 3 we summarize our �nd-ings and dis
uss possible avenues for future resear
h.2 TREE AND LEAF TYPES2.1 Classi�
ation and regression treesFigure 1 shows an example de
ision tree in whi
h thedistribution of a binary variable X is predi
ted as afun
tion of several other variables, some of whi
h aredis
rete (the Q's) and some of whi
h are 
ontinuous(the C's). To �nd the distribution of X , the predi
-tion algorithm simply starts at the root of the tree(shown at the top of our diagram) and follows a pathdown the tree's bran
hes a

ording to the values ofthe other variables until it rea
hes a leaf. For exam-ple, if the 
ontinuous variable C4 is less than .5, andthe trinary dis
rete variable Q1 has a value of 1, thenthe algorithm would predi
t that X has a 30% 
han
eof taking on its �rst possible value and a 70% 
han
eof its se
ond. Su
h de
ision trees for predi
ting thedistributions of dis
rete variables are also known as\
lassi�
ation trees" in 
ontexts where the task ulti-mately involves guessing a single value (typi
ally themost likely value) for the variable being predi
ted.Regression trees (e.g. (Breiman et al., 1984)) havestru
tures similar to those of de
ision trees, but theleaves of these trees provide information about the dis-tributions of a 
ontinuous variable X instead. Typi-
ally in regression this information is restri
ted to apoint estimate of the variable's mean; this mean may



be 
onstant, or it may be (for example) a linear fun
-tion of the parent variables. In order to obtain ana
tual density estimate, a varian
e 
an be supplied aswell as the mean in order to spe
ify the parameters ofa Gaussian.De
ision and regression trees are typi
ally learned bygreedy top-down divide-and-
onquer algorithms; weemploy su
h an algorithm in the experiments des
ribedin this paper. A de
ision or regression \stump" ofdepth one is grown for ea
h possible bran
hing vari-able. The algorithm then 
hooses the bran
h vari-able whose 
orresponding stump most in
reased thetotal 
onditional log-likelihoods of a randomly sele
tedsubset of the training data that was held out duringthe stump-training pro
ess. The algorithm then re-
ursively learns the bran
h node's 
hildren using theappropriate subsets of the training data. When split-ting on a dis
rete variable, the resulting bran
h alwayshas one 
hild for every possible value of the bran
hvariable; when splitting on a 
ontinuous variable, thebran
h has two 
hildren 
orresponding to whether thevariable is � or > the midpoint of the 
urrent pos-sible subrange for that variable. (The algorithm isinitially provided with a hyper
ube over the 
ontin-uous variables in whi
h all nonzero probability is as-sumed to lie.) Bran
hing is terminated when fewerthan ten training datapoints are 
onsistent with the
urrent subtree. A separate random holdout set of thetraining data is then used to prune the learned de
i-sion tree. Many variations of this learning algorithmare 
onsidered in the full version of this paper (Davies,2002).Regression trees may be adequate for representing 
on-tinuous 
onditional distributions in situations wherethey are in fa
t near-Gaussian, or when the probleminvolves guessing a point estimate and then being pe-nalized by its squared distan
e to the real value. How-ever, there are other situations in whi
h we may wishto have reasonably a

urate models of distributionsthat are more 
ompli
ated, e.g. multimodal. Thereare many possible 
riteria to use when judging the a
-
ura
y of su
h models; one of the most 
ommon isthe Kullba
k-Leibler divergen
e of the model from thetrue distribution. Sin
e we will be learning modelsfrom s
ienti�
 data with unknown true distributionsin our evaluations, we will use the log-likelihoods oftest sets in 
ross-validation experiments as empiri
alanalogues of the KL divergen
e.2.2 Strati�ed 
onditional density treesThere is no reason in prin
iple to stop at a simpleparametri
 distribution for the 
hild variable on
e thebran
hing on parent (i.e. \input") variables has �n-ished. Instead, one 
an employ a strati�ed 
onditional
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onditional density tree.density tree in whi
h any path from the root of thetree to a leaf �rst passes through a sequen
e of bran
hnodes that only test the parent variables, and thenthrough another sequen
e of bran
h nodes that onlytest the 
hild (i.e. \output") variables. Su
h a treefor estimating the 
onditional density of one 
ontin-uous variable X given another Z might look like theone in Figure 2, where for 
larity we have listed the
onditional probability masses inside the leaves ratherthan the 
onditional probability densities; the densi-ties are trivially 
omputed from these masses by di-viding by the volumes of the leaves. Note that in or-der to represent a valid 
onditional distribution, themasses in any subtree 
ontaining no bran
hes on theparent variables must sum to 1. This 
onstraint iswhat for
es us to learn trees with this strati�ed bran
h-ing stru
ture: if bran
hes on the input and output vari-ables are allowed to alternate arbitrarily, then the 
on-straint be
omes nonlo
al, making divide-and-
onquerapproa
hes to learning the tree diÆ
ult. (See (Davies,2002) for details.) The re
ursive algorithm we employto learn strati�ed 
onditional density trees is identi
alto the algorithmwe use to learn de
ision and regressiontrees, ex
ept that wherever the de
ision or regressiontree learner would 
all a routine that returns a simpleleaf distribution �tting the provided data, the strat-i�ed 
onditional density tree learner 
alls a subtree-learning pro
edure. This subtree-learning pro
edureis also identi
al to the algorithm we use to learn de
i-sion and regression trees, ex
ept the subtrees it learnsbran
h only on the output variable, and at ea
h bran
hthe algorithm divides the total 
onditional probabil-ity mass that ea
h 
hild is allo
ated a

ording to theproportion of datapoints that fall in that 
hild's sub-tree. Be
ause an entire subtree is learned where aCART-like algorithm merely needs to learn a leaf dis-tribution, learning strati�ed 
onditional density treesin this manner is signi�
antly more 
omputationallyexpensive to learn than CART-like trees. However,as we shall see, they 
an provide mu
h more a

uratedensity estimation.Given the total 
onditional probability mass that liesa given leaf, we are still left with a 
hoi
e of howto distribute it within that leaf. If the mass within



ea
h leaf is distributed with uniform density, then thestrati�ed 
onditional density tree is essentially employ-ing variable-resolution histograms in pla
e of the sim-ple parametri
 distributions (su
h as Gaussians) thatCART-like trees use. However, most other 
hoi
es (asmentioned in Se
tion 2.5) lead to more a

urate den-sity estimation.2.3 Using joint density trees 
onditionallyWhile the strati�ed 
onditional density trees dis
ussedin the previous se
tion 
an model 
onditional densitytrees mu
h more a

urately than CART-like single-level 
onditional density trees, they are 
omputation-ally expensive to learn. There are many heuristi
s that
ould be tried to alleviate this problem, su
h as learn-ing a CART-like tree �rst and using this tree's stru
-ture as a starting point for a strati�ed 
onditional den-sity tree. However, su
h heuristi
s would be unlikelyto in
rease the a

ura
y of the resulting models, andlikely to de
rease it. As it turns out, it is possible toa
hieve more a

urate density estimation and fasterlearning using an alternative approa
h.In this se
tion we dis
uss the use of density treesmodeling joint distributions P (Xi; ~�i) to obtain 
ondi-tional density estimates P (Xij ~�i). Ea
h leaf l of su
ha tree spe
i�es a joint probability P (Xi; ~�ijl): that is,the probability that Xi and ~�i take on spe
i�
 valueswithin the leaf's range, given that the datapoint liessomewhere within the bounds of l. Assuming we havea density tree representing P (Xi; ~�i), we 
an obtainan estimate for a parti
ular P (xij~�i) as follows:P (xij~�i) = Xl P (lj~�i) � P (xij~�i; l)= Xl P (l) � P (~�ijl)Pl0 P (l0) � P (~�ijl) � P (xij~�i; l)= P (l
) � P (~�ijl
) � P (xij~�i; l
)Pl0 P (l0) � P (~�ijl0)where the summation over l 
ollapses to a single leafl
 
onsistent with both xi and ~�i, sin
e all other leavesl have either P (~�ijl) or P (xij~�i; l) equal to zero. Thisequation gives us a simple way of 
al
ulating 
on-ditional distributions P (Xij ~�i) from trees modelingjoint distributions P (Xi; ~�i), assuming the distribu-tion P (Xi; ~�ijl) within ea
h leaf l 
an be marginalizedto 
ompute P ( ~�ijL) and 
onditionalized to 
omputeP (Xij ~�i; L).The algorithm we use to learn joint density trees ofthis form is identi
al to the learning algorithm we usefor de
ision / regression trees, ex
ept the joint densitytree learning algorithm treats Xi and ~� on equal foot-ing: either Xi or a variable in ~�i 
an be tested at any

parti
ular bran
h node, and the joint log-likelihoodsof all the variables in fXig [ ~�i are used for evaluat-ing any parti
ular bran
h 
hoi
e rather than just the
onditional log-likelihood of Xi.Joint density trees are trivially 
apable of represent-ing Bayesian 
lassi�ers when used 
onditionally in thismanner. In parti
ular, sin
e ea
h leaf in the densitytrees employed in this paper models ea
h dis
rete vari-able independently of all other variables (using a multi-nomial distribution), a Naive Bayes 
lassi�er for dis-
rete variables is obtained in the spe
ial 
ase wherethe density tree is a one-level density stump with aroot node bran
hing on the variable to be predi
ted.Su
h Naive Bayes 
lassi�ers have previously been usedto model the 
onditional distributions within Bayesiannetworks (He
kerman and Meek, 1997). A 
ommonlyused Bayesian 
lassi�er for 
ontinuous variables is tomodel ea
h 
lass distribution with a Gaussian; this
lassi�er is obtained simply with a density stumpbran
hing on the 
lass variable with leaves employ-ing Gaussian distributions over the 
ontinuous vari-ables. More generally, suppose a joint density treeover dis
rete variables has a bran
h stru
ture similarto the bran
h stru
ture of a strati�ed 
onditional den-sity tree: that is, on
e the output variable is testedin a bran
h node, no further tests 
an be performedon the input variables in subsequent levels of the tree.When this joint density tree is used to estimate 
ondi-tional distributions for the output variable, it is sim-ilar in form and fun
tion to a hybrid de
ision tree /Naive Bayesian 
lassi�er also developed in previous re-sear
h (Kohavi, 1996). In the most general 
ase whenthe tree has an arbitrary bran
h stru
ture (and thevariables are not ne
essarily dis
rete), the algorithmfor 
omputing 
onditional distributions essentially 
re-ates a Bayesian 
lassi�er \on the 
y" a
ross di�erentparts of the tree to determine whi
h of the leaves 
on-sistent with ~�i the datapoint probably 
ame from.Somewhat surprisingly, our experimental results showthat learning joint density trees and then using them
onditionally in this manner frequently leads to morea

urate 
onditional density estimation than the moredire
t approa
h of learning and using strati�ed 
ondi-tional density trees. One possible explanation of thisphenomenon is dis
ussed brie
y at the end of the nextse
tion.2.4 Approximately 
onditionalized jointdensity treesThe joint density trees dis
ussed in the previous se
-tion 
an be learned qui
kly and they appear to be atleast as a

urate as strati�ed 
onditional density treesin our experiments. However, they are 
omputation-ally expensive to use, sin
e evaluating the denominator



Pl0 P (l0) � P (~�ijl0) requires traversing the tree �ndingall leaves 
onsistent with the known value of ~�i.If the 
lass of density fun
tions used in the leavesis 
losed under addition and s
alar multipli
ation,then we 
an take a density tree modeling P (Xi; ~�i)and pre
ompute a marginalized density tree P ( ~�i).Su
h a marginalization algorithm for density treeswith 
onstant-density leaves has been used in previouswork by Kozlov and Koller on message-passing algo-rithms for inferen
e in 
ontinuous-variable graphi
almodels (Kozlov and Koller, 1997). On
e this tree is
omputed, we 
an 
ompute the 
onditional distribu-tion simply as P (Xij ~�i) = P (Xi; ~�i)P ( ~�i) , where 
omputingthe numerator and 
omputing the denominator ea
hrequire lo
ating and evaluating only one leaf distri-bution in the appropriate tree. Unfortunately, manyuseful leaf density estimators are not 
losed under ad-dition, in
luding those that have fa
tored nonuniformdistributions over multiple variables. Marginalizingtrees with su
h leaves results in a marginalized treewhose leaves 
ontain mixture distributions with many
omponents, and evaluating these leaves 
an take a sig-ni�
ant amount of 
omputational time. Furthermore,for some operations we might wish to perform withdensity trees, su
h as sampling or 
ompression, beingable to 
ompute P (Xij ~�i) as a quotient of two bla
k-box fun
tions is not parti
ularly helpful. Su
h oper-ations are mu
h more naturally performed in termsof leaf probabilities P (Lj ~�i) and leaf-dependent 
on-ditional probabilities P (XijL; ~�i). (For example, sup-pose we have an algorithm 
apable of generating a ran-dom sample from a Gaussian distribution. It is simpleto use this routine to generate a random sample froma mixture of Gaussians { �rst, we randomly 
hoose themixture 
omponent, and then we generate a randomsample from the 
orresponding Gaussian distribution.On the other hand, it is not so straightforward to useit to generate a random sample from a distributionrepresented as a quotient of two Gaussian mixtures.)However, in su
h situations we 
an still speed up theevaluation of 
onditional probabilities by 
reating anauxiliary tree in whi
h ea
h leaf 
ontains a pointer toa single leaf of the original density tree. This auxiliarytree has the same stru
ture as a strati�ed 
onditionaldensity tree in that all bran
hing on the parent vari-ables is performed �rst, after whi
h all bran
hing ison the 
hild variable. We 
reate the auxiliary tree'sstru
ture by �rst using a marginalization algorithmsimilar to that employed by Kozlov and Koller. Thismarginalization algorithm produ
es a tree in whi
h allbran
hes over Xi have been removed, and whi
h 
on-tains one leaf for every distin
t possible 
ombinationof leaves in the original tree that 
an be 
onsistentwith any single ~�i. We then re
ursively re�ne ea
h
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onditionalized joint densitytree. Ea
h leaf of the auxiliary tree (bottom) 
ontainsa pointer ba
k up to a single leaf in the original densitytree (top). The geometri
al representation of ea
h treeis shown to the left, and the tree-based representationto the right.leaf of the resulting marginalized tree by bran
hingon Xi until ea
h of the resulting leaves has a nonzerointerse
tion with pre
isely one of the leaves in the orig-inal joint density tree. See Figure 3 for an example;see the full paper (Davies, 2002) for further detail. We
all the 
ombination of the original joint density treeand the auxiliary tree a 
onditionalized joint densitytree.The auxiliary tree 
an help speed up the evaluation of
onditional probabilities simply by providing (in a sin-gle, relatively small subtree) pointers to all the leavesin the original joint density tree that are 
onsistentwith any given value of ~�i. This speedup is roughlysimilar to that whi
h would be a
hieved by using amarginalized density tree with mixture models in theleaves to 
ompute P ( ~�i) | roughly a fa
tor of two orso in our experiments (not shown here). However, we
an speed up the 
onditional evaluation of joint den-sity trees further by introdu
ing a simple approxima-tion. Within the 
ontext of any subtree ts where thebran
hing on Xi begins, we 
an approximate the 
on-ditional distribution P ( ~�ijl0) over ea
h original densitytree leaf l0 as P̂s( ~�ijl0), the mean of P ( ~�ijl0) over allthe datapoints 
onsistent with ts's 
onstraints. The
onditional density 
an then be be 
omputed approx-imately as:P (xij~�i) � P (l
) � P̂s(~�ijl
)Pl0 P (l0) � P̂s(~�ijl0) � P (xij~�i; l
)= �s
P (xij~�i; l
)where l
 is the single leaf 
onsistent with both xi and ~�i



(as before) and �s
 is a 
onstant. (An alternative wouldbe to 
ompute �s
 dire
tly as the average of P (l
j~�i)over the datapoints 
onsistent with ts's 
onstraints;however, this appears to not work quite as well empir-i
ally.) When we use a 
onditionalized joint densitytree in this manner, we refer to it as an approximately
onditionalized joint density tree.If ea
h leaf of the original joint tree employs a nonuni-form distribution over the parent variables, then ob-taining the 
onditional distribution P (Xij~�i) from ajoint tree using the relationshipP (xij~�i) =Xl P (lj~�i) � P (xij~�i; l)
an a
tually result in more a

urate 
onditional den-sity estimation than possible with strati�ed 
ondi-tional density trees, even though the joint density treesare optimized for joint probabilities rather than 
on-ditional probabilities. Intuitively, by 
ombining thedistributions learned in di�erent leaves using this re-lationship, we have essentially 
reated a \soft bran
h"over ~�i that helps us to more a

urately predi
t Xi asa fun
tion of ~�i without a
tually splitting the datasetfurther into 
ompletely disjoint subsets. In fa
t, as ourexperimental results will show, 
onditionalized jointdensity trees 
an a
tually provide more a

urate es-timates than strati�ed 
onditional density trees evenwhen the 
onditionalized joint density trees are usedapproximately, i.e., even when the \soft bran
hing"
oeÆ
ients �s
 are �xed as 
onstants.2.5 Leaf typesIn all of our experiments, ea
h leaf represents the dis-tribution of ea
h dis
rete variable as a multinomial dis-tribution independent of all other variables. However,we have experimented with a wide variety of distri-butions with whi
h to represent the densities of 
on-tinuous variables within ea
h density tree leaf: 
on-stant (i.e. uniform) densities; Gaussians with diago-nal 
ovarian
e matri
es or general 
ovarian
e matri
es(renormalized so our 
onditional distributions alwaysintegrate to one); exponential distributions; and linearand multilinear distributions. Spa
e restri
tions pre-vent us from dis
ussing all of these possibilities here;see (Davies, 2002) for further detail. Of these, linearand multilinear interpolation appear empiri
ally to bethe best density approximators for use in the leavesof strati�ed 
onditional density trees and 
onditional-ized joint density trees, with multilinear interpolationbeing slightly more a

urate than linear interpolationbut also more 
omputationally expensive. With lin-ear interpolation, ea
h 
ontinuous variable is modeledindependently, and its density varies linearly withinea
h leaf. With multilinear interpolation, the d 
on-

tinuous variables are modeled jointly by interpolatingbetween 2d densities asso
iated with the 
orners of theleaf's bounding hyperbox. In both 
ases, ea
h distri-bution to �t is expressed as a mixture model and then�t with the EM algorithm (Dempster et al., 1977) tomaximize the log-likelihood of the training data. Be-
ause the distribution of ea
h mixture 
omponent is�xed and only the prior probabilities of the mixture
omponents are adjusted, EM 
an be performed rela-tively qui
kly | and the log-likelihood is 
onvex, sothere are no suboptimal lo
al maxima for EM to gettrapped in. In order to keep leaf-learning reasonablyfast at the higher levels of the tree where many dat-apoints lie in ea
h 
andidate leaf, we restri
t the EMalgorithm to using at most 25 � 2d datapoints to �tany d-dimensional multilinear distribution, or at most25 � 2 � d datapoints to �t any d-dimensional inde-pendent linear interpolation. Furthermore, we restri
tEM to run for at most 10 iterations. Experiments notdes
ribed in this paper have shown that this subsam-pling and this limitation on the number of iterationshave a negligible e�e
t on the a

ura
y of the resultingdensity estimator.2.6 SmoothingThe tree-learning algorithms we employ are generallyoriented towards maximizing the log-likelihood of thedata | either just of Xi in the 
ase of CART-like andstrati�ed 
onditional density trees, or of fXig [ ~�i inthe 
ase of joint density trees. If we are using test-set log-likelihood as our 
riterion for density estimatorquality, su
h maximum-likelihood estimates 
an per-form arbitrarily poorly. Rather than attempt a 
om-plex fully Bayesian solution to the problem, we relyon a 
ommonly used and simpler te
hnique for work-ing around it: namely, we adjust the overall distri-bution slightly towards the uniform distribution in anad-ho
 fashion. For simpli
ity, we assume some bound-ing box is known a priori for the 
ontinuous variables.See (Davies, 2002) for details and a dis
ussion of howto handle other s
enarios.2.7 Experimental resultsIn this se
tion we 
ompare the a

ura
y of the four treetypes des
ribed above on a simple syntheti
 datasetand on two large s
ienti�
 datasets. The \Conne
ted"syntheti
 dataset was generated by sampling 80,000datapoints from a mixture of Gaussians in two di-mensions. The \Bio" dataset 
ontains data from ahigh-throughput biologi
al 
ell assay. There are 12,671re
ords and 31 variables. 26 of the variables are 
on-tinuous; the other �ve are dis
rete. Ea
h dis
rete vari-able 
an take on either two or three di�erent possiblevalues. The \Astro" dataset 
ontains data taken from



the Sloan Digital Sky Survey, an extensive astronomi-
al survey 
urrently in progress. This dataset 
ontains111,456 re
ords and 68 variables. 65 of the variablesare 
ontinuous; the other three are dis
rete, with ari-ties ranging from three to 81. See the full version of thepaper (Davies, 2002) for further experiments on addi-tional syntheti
 datasets, on other modi�
ations of thes
ienti�
 datasets, and with many other variations ofthe learning algorithms.Two minor adjustments were made to ea
h of the s
i-enti�
 datasets before handing them to any of ourlearning algorithms. First, all 
ontinuous variableswere s
aled so that all values lie within [0; 1℄. Thishelps put the log-likelihoods we report in 
ontext, andpossibly helps prevent problems with limited ma
hine
oating-point representation. Se
ond, the value ofea
h 
ontinuous value in the dataset were randomlyperturbed by adding noise to it | either uniform noisewith a range of .001, or Gaussian noise with a standarddeviation of .001. This noise was added to eliminateany deterministi
 relationships or delta fun
tions inthe data. The log-likelihood of a 
ontinuous datasetexhibiting even a single deterministi
 relationship be-tween two variables is in�nite when given the 
orre
tmodel; in su
h a situation, it is not 
lear how mean-ingful log-likelihood 
omparisons between 
ompetinglearning algorithms would be. Adding two di�erentkinds of noise also allows us to 
he
k how sensitive thealgorithms' relative performan
es are to variations inthe small-s
ale details of the datasets.Figure 4 shows a sample of our experimental resultsfor CART-like vs. strati�ed 
onditional density trees.Two di�erent kinds of leaf types are shown for theCART-like trees: Gaussians with 
onstant means, andGaussians in whi
h the mean is a linear fun
tion ofthe parent variables as determined by linear regres-sion. For strati�ed 
onditional density trees we showresults for uniform-density leaves in addition to thesetwo previous leaf types. A 10-fold 
ross-validation isperformed; we show the mean of the log-likelihoods ofthe test sets, as well as its empiri
ally estimated 95%
on�den
e interval. The best algorithm for a givendataset is shown in bold itali
s, as well as all othersthat are not worse than it with at least 95% 
on�-den
e a

ording to a Student's t-test. In the 
ase ofthe syntheti
 \Conne
ted" dataset, the task is sim-ply to model the 
onditional distribution of one vari-able given the other; in the 
ase of the two s
ienti�
datasets, the task is to model the joint distributionover all the variables using a Bayesian network witha �xed stru
ture. (These stru
tures had been learnedautomati
ally in previous work (Davies and Moore,2000)). The results show that strati�ed 
onditionaldensity trees model the distributions mu
h more a

u-
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CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform

Learning time (Secs)

 0 90 

Test-Set Log-Likelihood

 3000 10500 

Connected (synth)

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Lin. Reg.

Stratified, Uniform

Learning time (Secs)

 0 600 

Test-Set Log-Likelihood

 27000 78000 

Bio + .001 Gaussian Noise

Algorithm

CART-like, Indep. Gauss.

CART-like, Lin. Reg.

Stratified, Indep. Gauss.

Stratified, Uniform

Learning time (Mins)

 0 240 

Test-Set Log-Likelihood

 2e+06 3e+06 

Astro + .001 Gaussian Noise

Figure 4: A

ura
ies and learning times for CART-likevs. strati�ed density trees.rately. This is unsurprising in the 
ase of the syn-theti
 dataset, whi
h was generated to have multi-modal 
onditional distributions; however, it is inter-esting to note that the s
ienti�
 datasets also 
ontain
omplex 
onditional distributions not adequately 
ap-tured by CART-like 
onditional density trees. Unfor-tunately, strati�ed 
onditional density trees are alsomu
h more 
omputationally expensive to learn; in the
ase of the Astro dataset, the experiment for strati�ed
onditional density trees employing linear regressionin the leaves was aborted be
ause it would have takenseveral CPU-days to 
omplete. (We omit the resultsfor the s
ienti�
 datasets with uniform noise addedrather than Gaussian; however, they are qualitativelysimilar.)Figure 5 shows some of our experimental results 
om-paring strati�ed 
onditional density trees vs. variousforms of joint density trees. Two di�erent leaf distribu-tions are shown for ea
h tree type: uniform, and inde-pendent linear interpolations for ea
h variable (\ILI").These results illustrate several important trends:� Using interpolating distributions within the leavesimproves a

ura
y over uniform distributions.� Joint density trees with interpolating leaves aremore a

urate than strati�ed 
onditional densitytrees, and are fast to learn. Unfortunately, they'remu
h more expensive to evaluate.� Approximately 
onditionalized joint density treesare still more a

urate than strati�ed 
onditionaldensity trees, but are mu
h faster to learn andabout as fast to evaluate. Thus, these approxi-



Algorithm

Stratified Unif.

Stratified ILI

Joint Unif.

Joint ILI

Appr. Cond’d Joint ILI

Learning time (Secs)

 0 40 

Eval time (Secs)

 0 12 

Test-Set Log-Likelihood

 9900 10500 

Connected (synth)

Algorithm

Stratified Unif.

Stratified ILI

Joint Unif.

Joint ILI

Appr. Cond’d Joint ILI

Learning time (Secs)

 0 320 

Eval time (Secs)

 0 15 

Test-Set Log-Likelihood
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Algorithm

Stratified Unif.

Stratified ILI

Joint Unif.

Joint ILI

Appr. Cond’d Joint ILI

Learning time (Mins)

 0 240 

Eval time (Secs)

 0 900 

Test-Set Log-Likelihood

 3.28e+06 3.35e+06 

Astro + .001 Unif. Noise

Figure 5: Strati�ed vs. Joint vs. Approximately Con-ditionalized Joint density trees.mately 
onditionalized joint density trees 
ombinethe best features of the three other tree types.Similar results are obtained for other syntheti
datasets and for the s
ienti�
 datasets with Gaussiannoise added (Davies, 2002).2.8 Learning Bayesian Network Stru
tureswith Interpolating Conditional DensityTreesWe have developed an iterative Bayesian networkstru
ture-learning algorithm 
apable of using di�erentkinds of density trees for three di�erent phases of thelearning task. This algorithm is somewhat similar inspirit to the Sparse Candidate algorithm for learningnetwork stru
tures over dis
rete variables (Friedmanet al., 1999), and 
an be seen as a heuristi
 approxima-tion of steepest-as
ent hill-
limbing in order to make it
omputationally feasible. Up to three di�erent kindsof density trees may be used for three di�erent partsof the algorithm:� Fast-to-learn but relatively ina

urate trees 
anbe used to o

asionally re
ompute \steepness" es-timates in network stru
ture sear
h spa
e, i.e.,whi
h ar
 additions and removals seem promising.� Medium-quality trees 
an be used to 
ompare anew 
andidate network stru
ture with the bestpreviously found network stru
ture.� Expensive, high-quality density trees 
an be usedfor the �nal network parameterization after apromising network stru
ture has been settledupon.

Algorithm
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Algorithm

B. Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

Learning time (Mins)
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Algorithm

B. Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

Learning time (Hrs)

 0 6 

Eval time (Secs)

 0 1200 

Test-Set Log-Likelihood

 3e+06 3.5e+06 

Astro + .001 Unif. Noise

Algorithm

B. Net w/MLI Trees

B. Net w/Approx MLI Trees

AutoClass

Learning time (Hrs)

 0 6 

Eval time (Secs)

 0 2000 

Test-Set Log-Likelihood

 2.87e+06 2.95e+06 

Astro + .001 Gaussian NoiseFigure 6: Automati
ally learned Bayesian networkswith density trees vs. global mixture models learnedby AutoClass.Spa
e restri
tions pre
lude a detailed des
ription ofthis network stru
ture-learning algorithm; see (Davies,2002) for details. Using this 
exible network sear
halgorithm allows us to learn Bayesian networks mod-eling joint probability distributions over many 
ontin-uous and dis
rete variables in a reasonable amount oftime. We 
ompare the a

ura
y of these Bayesian net-works with that of global mixture models learned overall variables simultaneously by AutoClass (Cheesemanand Stutz, 1996). The results in Figure 6 show thaton the higher-dimensional \Astro" s
ienti�
 dataset,our Bayesian networks provide signi�
antly more a

u-rate density estimation than the global mixture mod-els, and 
an be learned and evaluated more qui
kly aswell | even when Gaussian noise is added to the data,whi
h would favor AutoClass's Gaussian mixture mod-els. The di�eren
e on the Astro dataset is even moredramati
 when the added noise is uniform. Whi
h ofthe two approa
hes works better on the Bio datasetdepends on the type of noise added; our networks farebetter when the added noise is uniform, but AutoClassfares better when the noise is Gaussian.3 CONCLUSIONSWe have explored a wide variety of tree-based rep-resentations for 
onditional density estimation, andshown that they 
an be used to feasibly learn Bayesiannetworks over dozens of 
ontinuous variables frommany thousands of datapoints. In some 
ases,the resulting models are simultaneously more a

u-rate, faster to learn, and faster to evaluate thanglobal mixture models. We have not yet experi-mentally 
ompared this approa
h to previously devel-oped global dis
retization-based approa
hes to learn-



ing Bayesian networks (e.g. (Friedman and Gold-szmidt, 1996a), (Monti and Cooper, 1998a)); while wehave presented an interesting possible alternative, fur-ther experimentation is warranted. Numerous otherlines of further resear
h are possible; for example, ex-pli
it a

ura
y/
omputation tradeo�s 
an be exploredfor approximately 
onditionalized joint density trees.See (Davies, 2002) for further dis
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