
1Statistial Mahine Learning for Large-Sale OptimizationContributorsS. Baluja, A.G. Barto, K.D. Boese, J. Boyan, W. Buntine, T. CarsonR. Caruana, D.J. Cook, S. Davies, T. Dean, T.G. Dietterih, P.J. GmytrasiewizS. Hazlehurst, R. Impagliazzo, A.K. Jagota, K.E. Kim, A. MGovern, R. MollA.W. Moore, E. Moss, M. Mullin, A.R. Newton, B.S. Peters, T.J. PerkinsL. Sanhis, L. Su, C. Tseng, K. Tumer, X. Wang, D.H. WolpertEditors Justin Boyan, Wray Buntine, and Arun JagotaContentsIntrodution J. BoyanA Review of Iterative Global Optimization K. BoeseEstimating the Number of Loal Minima in Complex Searh Spaes R. Caruana and M. MullinsExperimentally Determining Regions of Related Solutions forGraph Bisetion Problems T. Carson and R. ImpagliazzoOptimization of Parallel Searh Using Mahine Learning and Un-ertainty Reasoning D. Cook, P. Gmytrasiewiz, and C. TsengAdaptive Heuristi Methods for Maximum Clique A. Jagota and L. SanhisProbabilisti Modeling for Combinatorial Optimization S. Baluja and S. DaviesAdaptive Approahes to Clustering for Disrete Optimization W. Buntine, L. Su, and R. NewtonBuilding a Basi Blok Instrution Sheduler with ReinforementLearning and Rollouts A. MGovern, E. Moss, and A. Barto\STAGE" Learning for Loal Searh J. Boyan and A. MooreEnhaning Disrete Optimization with Reinforement Learning:Case Studies Using DARP R. Moll, T. Perkins, and A. BartoStohasti Optimization with Learning for Standard CellPlaement L. Su, W. Buntine, R. Newton, and B. PetersColletive Intelligene for Optimization D. Wolpert and K. TumerEÆient Value Funtion Approximation Using Regression Trees X. Wang and T. DietterihNumerial Methods for Very High-Dimension Vetor Spaes T. Dean, K. Kim, and S. HazlehurstIntrodutionLarge-sale global optimization problems arise in all �elds of siene, engineering, and business; andexat solution algorithms are available all too infrequently. Thus, there has been a great deal of workon general-purpose heuristi methods for �nding approximate optima, inluding suh iterative tehniquesas hilllimbing, simulated annealing, and geneti algorithms (e.g., [4℄). Despite their lak of theoretial0Neural Computing Surveys 3, 1-58, 2000, http ://www.isi.berkeley.edu/~ jagota/NCS

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 2guarantees, these tehniques are popular beause they are simple to implement and often perform well inpratie.Reently, there has been a surge of interest in analyzing and improving these heuristi algorithms withthe tools of statistial mahine learning. Statistial methods, working from the data generated by heuristisearh trials, an disover relationships between the searh spae and the objetive funtion that the urrenttehniques ignore, but that may be pro�tably exploited in future trials. Researh questions inlude thefollowing:� Can one learn a pattern about loal minima from whih one ould loate superior loal minima moreeÆiently than by simple repeated trials?� Can multiple heuristis be ombined on the y, or perhaps by pre-omputation?� Is the outome of a searh trajetory preditable in advane, and if so, how an suh preditions belearned and exploited?� Can e�etive high-level searh moves be learned automatially?� Does the problem have a natural lustering or hierarhy that enables the searh spae to be saleddown?� Can the statistial models built in the ourse of solving one problem instane be pro�tably transferredto related, new instanes?These questions are starting to be answered aÆrmatively by researhers from a variety of ommunities,inluding reinforement learning, deision theory, Bayesian learning, onnetionism, geneti algorithms, sat-is�ability, response surfae methodology, and omputer-aided design. In this survey, we bring together shortsummaries of 14 reent studies that engage these questions.The 14 studies overlap in many ways, but perhaps are best ategorized aording to the goal of theirstatistial learning. We onsider eah of the following goals of learning in turn: (1) understanding searhspaes; (2) algorithm seletion and tuning; (3) learning generative models of solutions; and (4) learningevaluation funtions.Understanding searh spaesStatistial analyses of the searh spaes that arise in optimization problems have produed remarkableinsights into the global struture of those problems. The analyses give essential guidane to those who woulddesign algorithms to exploit suh struture. Our survey inludes three abstrats in this ategory:� Boese de�nes the \entral limit atastrophe" of multi-start optimization, illustrates the \big valley"ost surfae that empirially desribes many large-sale optimization problems, and outlines a numberof promising researh diretions.� Caruana and Mullin introdue a probabilisti method for ounting the loal optima in a large searhspae, with appliation to improving the uto� riteria in geneti algorithms and simulated annealing.� Carson and Impagliazzo introdue the property of \loal expansion" of a searh graph, show howto test for that property in large-sale domains, and use the test to predit how easy or diÆult anoptimization instane will be for a given heuristi.Algorithm seletion and tuningA natural yet under-investigated approah to aelerating optimization performane is to apply mahinelearning to tune the optimizer's parameters automatially. Suh parameters may inlude domain-spei�terms, suh as the oeÆients of extra objetive-funtion terms; generi parameters of the heuristi, suhas the ooling-rate shedule in simulated annealing; and even high-level disrete parameters, suh as whih

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 3of a set of heuristis to apply. From sample optimization runs, a mapping from parameters to expetedperformane an be learned. This mapping an then itself be \meta-optimized" to generate the best set ofparameters for a family of problems.Two abstrats in our survey fall into this ategory:� Cook, Gmytrasiewiz, and Tseng apply mahine learning to the task of automatially seleting the bestheuristi for use by Eureka, their parallel searh arhiteture, on a given problem instane. Theyompare deision-tree and Bayes-network learning methods.� Jagota and Sanhis desribe several heuristis for the NP-hard Maximum-Clique problem. The heuris-tis are parameterized by an initial state and/or a weight vetor, whih adapt from iteration to iterationdepending on their e�et on optimization performane.Learning generative models of solutionsBoese's \big valley" hypothesis indiates that in pratial problems, high-quality loal optima tend to be\entrally loated" among the loal optima in the searh spae. This suggests an adaptive strategy ofolleting the best loal optima found during searh and training a model of those solutions. If the model isgenerative, it an be alled upon to generate new, previously untried solutions similar to the good solutionson whih it was trained. This survey inludes two relevant abstrats:� Baluja and Davies point out that impliitly, geneti algorithms do preisely this sort of modeling: the\population" stores good solutions that have already been found, and the mutation and reombinationoperators generate new, similar solutions. Their abstrat summarizes three algorithms that make thegeneti algorithm's modeling funtion expliit, onsequently improving optimization performane.� Buntine, Su and Newton learn a generative model in the problem of hyper-graph partitioning, ruialin VLSI design [3℄. The model is in the form of a lustering of the graph nodes, based on a statistialanalysis of the best solutions found so far in the searh. The lustering e�etively sales down the sizeof the searh spae, enabling good new andidate solutions to be generated very quikly.Learning evaluation funtionsFinally, the fourth and most ative ategory of researh overs learning evaluation funtions. An evaluationfuntion is a mapping from domain solutions to real numbers|the same form as the objetive funtionitself. And just as the objetive funtion is used to guide searh through the state spae, so may any otherevaluation funtion be used for that purpose. In fat, there are many ways in whih a learned evaluationfuntion might usefully supplement the domain's given objetive funtion:Evaluation speedup: In ases where the domain objetive funtion is expensive to alulate, a fast ap-proximate model of the objetive funtion ould lead searh to the viinity of the optimum with lessomputation (e.g., [5℄).Move seletion: An appropriately built evaluation funtion ould be used in plae of the original objetivefuntion to guide searh. Ideally, suh a funtion would share its global optimum with that of theoriginal objetive, but would eliminate the loal optima and plateaus that impede searh from reahingthat goal (e.g., [7℄).Restarting: Iterative algorithms are often run repeatedly, eah time starting from an independent random\restart" state. Instead, an evaluation funtion may be trained to guide searh to new states that arepromising restart states. Suh a funtion an e�etively provide large-step \kik moves" that guidethe searh out of a loal optimum and into a more promising region of spae. Generative models mayalso be used this way.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 4Move sampling: In domains with many searh moves available at eah step, it is time-onsuming to samplemoves at random, hoping for an improvement. Instead, a \state-ation" evaluation funtion (one thatestimates the long-term e�et of trying a given move in a given state) may be applied to sreen outunpromising moves very quikly.Trajetory �ltering: An evaluation funtion that predits the long-term outome of a searh trajetorymay be employed as a riterion for utting o� an unpromising trajetory and beginning a new one.Abstration: Some problems naturally divide into two or more hierarhial levels; e.g., in traditional VLSIdesign, plae-then-route. Although the true objetive funtion is only de�ned over fully instantiatedsolutions (at the lowest level), learned evaluation funtions an provide an aurate heuristi to guidesearh at higher levels.Transfer: Evaluation funtions de�ned over a small set of high-level state-spae \features" may readily betransferred|i.e., built from a training set of instanes, and then applied quikly to novel instanes inany of the ways desribed above.How an useful evaluation funtions be learned automatially, through only trial-and-error simulations ofthe heuristi? In most ases, what is desired of the evaluation funtion is that it provide an assessment of thelong-range utility of searhing from a given state. Tools for exatly this problem are being developed in thereinforement learning ommunity under the rubri of \value funtion approximation" [2℄. Alternatives tovalue funtion approximation inlude learning from \rollouts" (e.g., [1℄) and treating the evaluation funtionweights as parameters to \meta-optimize" (e.g., [6℄), as desribed above in the setion on algorithm tuning.Our survey inludes summaries of �ve studies on learning evaluation funtions for optimization:� MGovern, Moss, and Barto learn an evaluation funtion for move seletion in the domain of optimizingompiled mahine ode, omparing a reinforement-learning-based sheduler with one based on rollouts.� Boyan and Moore use reinforement learning to build a seondary evaluation funtion for smart restart-ing. Their \STAGE" system alternately guides searh with the learned evaluation funtion and theoriginal objetive funtion.� Moll, Perkins, and Barto apply an algorithm similar to STAGE to the NP-hard \dial-a-ride" problem(DARP). The learned funtion is instane-independent, so it applies quikly and e�etively to newDARP instanes.� Su, Buntine, Newton, and Peters learn a \state-ation" evaluation funtion that allows eÆient movesampling. They report impressive results in the domain of VLSI Standard Cell Plaement.� Wolpert and Tumer give a prinipled method for deomposing a global objetive funtion into a ol-letion of loalized objetive funtions, for use by independent omputational agents. The approahis demonstrated on the domain of paket routing. (Also see Boese's abstrat for other results onmulti-agent optimization.)Finally, sine the tehniques of reinforement learning are so relevant to this line of researh, we inludesummaries of two ontributions that do not deal diretly with large-sale optimization, but rather advanethe state of the art in large-sale reinforement learning:� Wang and Dietterih summarize the types of models that have been used for value funtion approxi-mation, and introdue a promising new model based on regression trees.� Dean, Kim, and Hazlehurst desribe an innovative, ompat representation for large-sale sparse matrixoperations, with appliation to eÆient value funtion approximation.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 5It is our hope that these 14 summaries, taken together, provide a oherent overview of some of the �rst stepsin applying mahine learning to large-sale optimization. Numerous open yet manageable researh problemsremain unexplored, paving the way for rapid progress in this area. Moreover, the improvements that resultfrom the maturation of this researh are not merely of aademi interest, but an deliver signi�ant gainsto omputer-aided design, supply-hain optimization, genomis, drug design, and many other realms ofenormous eonomi and sienti� importane.Referenes[1℄ D. Bertsekas, J. Tsitsiklis, and C. Wu. Rollout algorithms for ombinatorial optimization. TehnialReport LIDS-P 2386, MIT Laboratory for Information and Deision Systems, 1997.[2℄ J. A. Boyan, A. W. Moore, and R. S. Sutton, editors. Proeedings of the Workshop on Value FuntionApproximation, Mahine Learning Conferene, July 1995. CMU-CS-95-206. Internet resoure available athttp://www.s.mu.edu/~reinf/ml95/.[3℄ L. W. Hagen and A. B. Kahng. Combining problem redution and adaptive multi-start: A new tehniquefor superior iterative partitioning. IEEE Transations on CAD, 16(7):709{717, 1997.[4℄ D. S. Johnson and L. A. MGeoh. The traveling salesman problem: A ase study in loal optimization.In E. H. L. Aarts and J. K. Lenstra, editors, Loal Searh in Combinatorial Optimization. Wiley and Sons,1997. Internet resoure available at http://www.researh.att.om/~dsj/papers/TSPhapter.ps.[5℄ A. W. Moore and J. Shneider. Memory-based stohasti optimization. In D. Touretzky, M. Mozer, andM. Hasselmo, editors, Neural Information Proessing Systems 8, 1996.[6℄ E. Ohotta. Synthesis of High-Performane Analog Cells in ASTRX/OBLX. PhD thesis, CMU Eletrialand Computer Engineering, 1994.[7℄ W. Zhang and T. G. Dietterih. A reinforement learning approah to job-shop sheduling. In Proeedingsof the International Joint Conferene on Arti�ial Intelligene (IJCAI), pages 1114{1120, 1995.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 6A Review of Iterative Global OptimizationKenneth D. BoeseCadene Design Systems, San Jose, USA,An instane of �nite global optimization onsists of a �nite solution set S and a real-valued ost funtionf : S ! <. Global optimization seeks a solution s� 2 S whih (without loss of generality) minimizes f .Combinatorial optimizations of this type arise in a wide variety of omputational domains suh as om-puter arhiteture, operations researh, omputational hemistry and biology, and neural network training.Beause many of these optimization problems are NP-hard [8℄, and probably impossible to solve optimallyin polynomial time, heuristi algorithms are neessary for large instanes. These heuristis often use aniterative searh that is broadly be desribed by the iterative global optimization (IGO) template below.Iterative Global Optimization (IGO)1. for i = 0 to +12. Given the urrent solution si, generate a new trial solution s03. Deide whether to set si+1 = si or si+1 = s04. if a stopping ondition is satis�ed5. return the best solution foundTypially, s0 in Line 2 of the template is generated by a well-de�ned, often randomized, perturbation tosi, i.e., s0 2 N(si) where N(si) indiates the set of neighboring solutions or neighborhood, of si. Togetherwith N , the ost funtion f de�nes a ost surfae over the neighborhood topology.Some important variations of the general IGO framework inlude 1) greedy desent IGO; 2) hill-limbingIGO; 3) multi-start or multi-agent IGO; and 4) IGO with problem-size redution. In greedy desent, theandidate solution s0 is hosen as si+1 only if it has lower ost than si. Sophistiated implementations ofgreedy desent an quikly searh a large neighborhood of si for an improving solution. Examples inludeBentley's fast implementation of the 3-Opt neighborhood for the traveling salesman problem (TSP) [2℄ andother more ompliated greedy algorithms, suh as the Lin-Kernighan algorithm [18℄ for the TSP and theKernighan-Lin algorithm [16℄ for graph partitioning.The main weakness of greedy desent is that it beomes stuk at any loally minimum solution. IGOvariations 2 and 3 are designed to avoid this weakness. Hill-limbing allows some disimproving or \up-hill" moves, i.e., f(si+1) > f(si). Some popular algorithms in this lass are simulated annealing [17℄, tabusearh [9℄, threshold aeptane [6℄, and simulated tempering [19℄. Tabu searh and simulated temperingare also adaptive, i.e., they modify their own parameters during the run based on earlier results of the samerun. Another way to avoid getting stuk at loal minima is multi-start IGO, whih restarts a new greedydesent from a new starting solution s0 whenever a loal minima is enountered. Multi-start IGO is easilyparallelizable by exeuting separate runs on di�erent proessors or \agents". Some examples of multi-startheuristis inlude [20℄ [5℄ [11℄.The simplest hill-limbing and multi-start implementations may still have trouble �nding near-optimalsolutions, however. For many NP-Hard problems, as the problem size inreases, the number of loal minimaappears to grow exponentially, and most loal minima may be signi�antly worse than the optimal solution.We have alled this phenomenon the \entral limit atastrophe" [5℄ [3℄, while elsewhere it has been desribedas the \omplexity atastrophe" [13, 14, 15℄ and the \error atastrophe" [7℄. The problem is that if thedistribution of the osts of the loal minima is approximately Gaussian, and if the number of loal minimainreases exponentially, then an inreasing perentage of the loal minima osts will be lustered near theaverage loal minima ost and far from the optimal ost.One way to avoid the entral limit atastrophe is to exploit the struture of the ost surfae de�nedby the neighborhood operator N and ost funtion f . For example, Figure [3℄ plots solution ost versusdistane to the optimal solution and versus average distane to the other loal minima for 2,500 di�erentloal minima of the ATT532 TSP test ase. It appears from these plots that lower-ost loal minima are

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 7
 x 103

29.60

29.80

30.00

30.20

30.40

30.60

30.80

31.00

31.20

31.40

31.60

31.80

32.00

32.20

32.40

32.60

160.00 180.00 200.00 220.00

 x 103

29.60

29.80

30.00

30.20

30.40

30.60

30.80

31.00

31.20

31.40

31.60

31.80

32.00

32.20

32.40

32.60

215.00 220.00 225.00 230.00 235.00 240.00 245.00

Mean distance to other solutions

(a)

Distance to optimal

(b)

C
o
st

C
o
st

2,500 Random 2-Opt loal minima for ATT532. Tour ost (vertial axis) is plotted against (a) meandistane to the other loal minima and (b) distane to the global minimum.
Figure 1: Intuitive piture of a \big valley" ost surfae.loated loser to the global minimum and loser to the \enter" of the set of loal minima. This suggests a\big valley" appearane or struture, as illustrated in Figure 1. One way to exploit the big valley is to runmulti-start IGO using starting points s0 generated an \averaging" of previously found loal minima [5℄. Ingeneral, the goal is to generate an interation between the di�erent multi-start or multi-agent runs in orderto exploit the struture of the ost surfae.The fourth IGO variation of problem-size redution provides another way to avoid the entral limitatastrophe. It uses lustering to dramatially redue the size of the solution spae. This approah, ombinedwith multi-start, has been partiularly suessful for iruit partitioning in VLSI omputer iruit design [1℄[10℄ [12℄.

Full Cooperation

Cooperation with Penalties

Communication Only

Independent Agents

Single Agent

Sequential
Multi-StartFigure 2: Hierarhy of dominane between di�erent models of adaptive annealing. Eah arrow pointsfrom a dominating to a dominated model.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 8

.001

.01

.1

1.0

10.0

100.0

40 60 80206

Number of Steps

E
x
p

e
ct

e
d

 B
S

F
 C

o
st

(%

 >
 o

p
t.

)
2 Coop. Agents

Single Agent

2 Indep. Agents

Figure 3: Expeted best-so-far qualities of optimal poliies on instane 3SAT6.Finally, we suggest that modeling IGO on small optimization instane an give insights for improving IGOstrategies. For example, in [4℄ and [3℄ we omputed optimal temperature shedules for simulated annealingon small instanes of TSP, graph partitioning, iruit plaement, and 3-SAT. The shedules we found indiatethat temperature shedules should not be monotone dereasing, in ontrast to the onventional wisdom forsimulated annealing. These results an be used to motivate the non-dereasing shedules used in simulatedtempering [19℄. In Chapter 9 of [3℄, we also studied optimal simulated annealing using adaptive shedulesand multiple agents. We found that interation among agents an be potentially very powerful, dependingon the level of interation. Using our models, we an also ompared di�erent kinds of interation, inluding\ommuniation" (sharing attained osts) and \ooperation" (sharing osts and swapping solutions). Figure2 shows a partial hierarhy between di�erent multi-agent models in our study. (The quality of a model equalsthe expeted ost of the best solution for a given number of IGO steps divided among the di�erent agents.In general, one regime will dominate another if it an simulate the other one without using any extra IGOsteps.) For a small 3-SAT instane, Figure 3 shows the expeted solution ost of di�erent regimes usingoptimal adaptive annealing shedules. From the �gure, we note that ooperating agents appear to have alarge potential for produing nearly optimal solutions, ompared to multiple agents working independently.In onlusion, we have reviewed some diretions for analyzing and extending the iterative global opti-mization strategy. We believe there are a number of fruitful areas for further researh, inluding the furtherunderstanding of ost surfaes strutures and the exploitation of interation between multiple proessors or\agents". Referenes[1℄ C. J. Alpert, J.-H. Huang and A. B. Kahng, \Multilevel Ciruit Partitioning", in Proeedings of the 34thDesign Automation Conf., 530-33 (1997).[2℄ Bentley, J.L., \Fast Algorithms for Geometri Traveling Salesman Problems", ORSA Journal on Com-puting 4 (4), 387-411 (Fall 1992).[3℄ K. D. Boese, Models for Iterative Global Optimization, Ph.D. Thesis, UCLA Computer Siene Dept.,1996.[4℄ K. D. Boese and A. B. Kahng, \Best-So-Far vs. Where-You-Are: Impliations for Optimal Finite-TimeAnnealing", Systems and Control Letters 22 (1), 71-78 (1994).

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 9[5℄ K. D. Boese, A. B. Kahng and S. Muddu, \On the Big Valley and Adaptive Multi-Start for DisreteGlobal Optimizations", Operations Researh Letters, 16 (2), 101-113 (1994).[6℄ G. Duek and T. Sheuer, \Threshold Aepting: A General Purpose Optimization Algorithm AppearingSuperior to Simulated Annealing", J. of Computational Physis, 90, 161-75 (1990).[7℄ M. Eigen and P. Shuster, The Hyperyle, Springer-Verlag, 1979.[8℄ M. R. Garey and D. S. Johnson, Computers and Intratability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.[9℄ F. Glover, \Tabu Searh | Part II", ORSA Journal on Computing, 2 (1), 4-32 (1990).[10℄ L. W. Hagen and A. B. Kahng, \Combining Problem Redution and Adaptive Multi-Start: A New Teh-nique for Superior Iterative Partitioning", IEEE Transations on Computer-Aided Design of IntegratedCiruits and Systems, 16 (7), 709-17 (1997).[11℄ D. S. Johnson and L. A. MGeoh, \The Traveling Salesman Problem: A Case Study in Loal Opti-mization", in E. H. L. Aarts and J. K. Lenstra, eds., Loal Searh in Combinatorial Optimization, Wileyand Sons, 1997.[12℄ G. Karypis and V. Kumar, \A Fast and High Quality Multilevel Sheme for Partitioning IrregularGraphs", SIAM Journal on Sienti� Computing, 20 (1), 359-92 (1998).[13℄ S. Kau�man and S. Levin. \Toward a General Theory of Adaptive Walks on Rugged Landsapes",Journal of Theoretial Biology 128, 11-45 (1987).[14℄ S. Kau�man, Adaptation on Rugged Fitness Landsapes, in D. L. Stein, ed., Letures in the Sienesof Complexity, Addison-Wesley, 1989.[15℄ S. A. Kau�man, The Origins of Order : Self-Organization and Seletion in Evolution, Oxford UniversityPress, 1993.[16℄ B. W. Kernighan and S. Lin, \An EÆient Heuristi Proedure for Partitioning Graphs", The BellSystem Tehnial Journal, 49, 291-307 (1970).[17℄ S. Kirkpatrik, C. D. Gelatt, and M. Vehi, \Optimization by Simulated Annealing", Siene, 220,671-680 (1983).[18℄ S. Lin and B. W. Kernighan, \An E�etive Heuristis Algorithm for the Traveling-Salesman Problem",Operations Researh, 31, 498-516 (1973).[19℄ E. Marinari and G. Parisi, \Simulated Tempering: a New Monte Carlo Sheme" Europhysis Letters,19 (6), 451-5 (1992).[20℄ O. Martin, S. W. Otto and E. W. Felton, \Large-Step Markov Chains for the TSP Inorporating LoalSearh Heuristis", Operations Res. Letters, 11 (4), 219-24 (1992).

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 10Estimating the Number of Loal Minima in Complex Searh SpaesRih Caruana y,z and Matthew Mullinzy UCLA; z JustResearh,Most optimization researh is devoted to new or improved algorithms. Little e�ort is spent haraterizingsearh spaes so that appropriate algorithms an be seleted. We present an eÆient method for estimatingthe number of loal minima in big searh spaes. The method is based on the statistis of the birthdayproblem: "How many people must be in a room before the probability is 1/2 that two people share the samebirthday?" Assuming that the probability of birthdays is uniform on a 365 day year, one an estimate thatthe probability of a birthday being dupliated is 0.5 when there are 23 people in the room.We reverse the birthday problem to address the question \How long is the year if a birthday is dupliatedwhen we put k people in the room?" Generalizing the usual approximation for the birthday problem andsolving for N, the number of days in the year, as a funtion of k, the number of people in the room, and PD ,the probability of dupliation, yields: N � k2�2ln(1� PD)By ounting the number of loal minima explored by searh before some loal minimum is visited twie,we an estimate the total number of loal minima in the searh spae. One proedure for doing this is torandomly sample loal minima, reording eah one, until one of the minima is visited a seond time. Thisyields an estimate of the number of minima needed for the probability to be about 0.5 that a minimumis dupliated. Unfortunately, it is diÆult to eÆiently sample loal minima uniformly. In the abseneof an eÆient means of uniformly sampling loal minima we an either use an ineÆient uniform samplingproedure, or an eÆient non-uniform sampling proedure. Here we sari�e auray for a gain in eÆieny.If sampling is not uniform, fewer samples will be needed for dupliation to our, so the expeted total numberof loal minima will be underestimated. This is aeptable beause lower bounds on the number of loalminima are more useful than upper bounds. Iterated hilllimbing using steepest, nearest, or stohastidesent starting from randomly seleted initial points is one way to eÆiently sample loal minima in manysearh spaes.We used this method to estimate the number of loal minima in the searh spaes of multiplierless FIRdigital �lters. Optimal tap values for full-preision FIR �lters an be omputed analytially [1℄, but full-preision �lters are slow and onsume a lot of hip area. Restriting tap values to powers of 2 allows fast,ompat shift registers to be used instead of multipliers [2℄. There are no analyti tehniques for seletingoptimal tap values for these �lters, so we use numerial optimization. Low-pass multiplierless �lters with31, 41 and 51 taps yield searh spaes with 16, 21 and 26 dimensions, respetively, beause tap values aresymmetri about the entral tap. Taps an take 15 values (zero, and positive and negative reiproal powersof two). The searh spaes are large, ontain a large number of poorly performing loal minima, and theproportion of good �lters grows inreasingly small as the number of taps gets large [3℄.We performed 10,000 hilllimbs with iterated steepest desent for �lters with 31, 41, and 51 taps. Onaverage, 27 steps were required for eah desent to beome trapped in a loal minimum. A dupliated loalminimum was found in only the smallest searh spae (31 taps). Thus the estimates for the 41 and 51 tapsearh spaes are lower bounds on the estimated lower bounds. The results indiate that there are more than4:22� 107 loal minima in the 31-tap searh spae. Thus the minima omprise at least 6:4� 10�8 perent ofthe 31-tap searh spae. A simple upper bound analysis shows that there are fewer than 1014 loal minimain the 31-tap searh spae, or less than 1:5� 10�3 of the points in the spae are loal minima.The birthday proedure is eÆient for two reasons: 1) it needs sample sizes of roughly the square root ofthe total number of loal minima to estimate the total number; 2) it uses optimization to �nd loal minima.The savings an be dramati. In the 31-tap spae, eah hilllimb required about 27 steps to �nd a loal

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 11Table 1: Estimated Number of Loal Minima in the Searh Spaes# Taps # of States # of LoalMinima until 1stDupliate Estimated # ofLoal Minima inSpae31 6:6� 1018 7,651 4:22� 10741 5:0� 1024 >10,000 > 7:21� 10751 3:8� 1030 >10,000 > 7:21� 107minimum, and eah step required 32 funtion evaluations to determine the diretion of steepest desent.Thus the 7651 hilllimbs required 6:4� 106 funtion evaluations to �nd the �rst dupliate. A nave approahto estimating the number of loal minima is to randomly sample points in the spae and determine whatfration of these are minima. If minima omprise 6:4� 10�8 perent of the spae, we would have to sample7:8� 1010 points to have a 50% hane of �nding a single minimum, and at eah of these points 33 funtionevaluations would be required to determine if the point is a loal minimum. Thus 2:6 � 1012 evaluationswould be required to estimate the number of loal minima using random point sampling. This is 105 timesmore funtion evaluations than required using birthday statistis. Moreover, if we stop sampling points afterusing the 104 samples used with the birthday method, we almost ertainly will not have found even one loalminimum, so all we'll know is that there probably are fewer than 6:6� 1014 loal minima in the spae. Thatupper bound isn't very informative. One key advantage of the birthday proedure is that the informationneeded to estimate the number of loal minima is available whenever optimization is run multiple times. Itis not neessary to run a di�erent, and possibly ostly proedure to make an estimate.It an be estimated that seeing most points in a spae ontaining N points requires about N lnN randomsamples. Thus it would take at least 7 � 107 samples of loal minima in the 31-tap spae to have a highprobability of seeing the global minimum. This is 7�103 times more hilllimbs than were needed to make thisestimate. 104 hilllimbs took 1 CPU day, so it would take at least 20 years of iterated hilllimbing to reliably�nd the optimal �lter. A more eÆient searh proedure (or a faster omputer) probably is required. Witha small amount of searh, we an estimate how muh more searh is required for that searh method to �ndthe global optimum (and that estimate an be made without knowing the true global optimum). Estimatingthe number of loal minima gives us a riterion for halting searh long before the �rst dupliate minimum isfound: If it is important to �nd the global optimum, we an stop running a searh proedureas soon as we ollet enough unique loal minima so that the estimated lower bound on thetotal number of loal minima is larger than we an a�ord to searh with that proedure.Another use of estimates made with the birthday method is to selet what optimization proedure touse: Suppose we run simulated annealing (SA) 15 times using a slow ooling shedule and estimate thatSA-SLOW e�etively searhes a spae ontaining at least 75 loal minima. Suppose we run SA again, doing150 trials with a fast ooling shedule that is more likely to get stuk in inferior loal minima, and estimatethat SA-FAST e�etively searhes a spae ontaining about 5,000 loal minima. Assuming these are tightlower bounds, if SA-FAST is more than 5000 log500075 log 75 � 131:5times faster than SA-SLOW, and we want to �nd the global optimum, it probably will be better to runmore SA-FASTs despite the fat that eah run of SA-FAST is more likely to �nd inferior loal minima thanSA-SLOW. This deision making an be automated and embedded in a tool that interleaves exeution ofdi�erent optimization methods, and uses the aumulating statistis to deide whih optimization methodto alloate future trials to.The main diÆulty when using the birthday method to estimate the number of loal minima in a searhspae is the problem of non-uniform sampling. If some minima have larger basins of attration than other

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 12minima, searh proedures like iterated hilllimbing will fall into the larger basins more often, skewing thestatistis so that dupliates our more frequently, and degrading the tightness of the lower bound. (Ifsampling were uniform the method would yield an unbiased estimate instead of an estimate of a lowerbound.) There are a number of ways to deal with the problem of non-uniform sampling of loal min-ima, depending on how extreme the di�erenes in basin sizes are and how tight the bound must be. (Seehttp:/www.s.mu.edu/ aruana/pubs/ijai99 for details.)Referenes[1℄ L.R. Rabiner and B. Gould. Theory and Appliation of Digital Signal Proessing . Prentie Hall, Engle-wood Cli�s, NJ, 1975.[2℄ D. Koo and A. Miron. Design of Multiplierless FIR Digital Filters with two to the Nth Power CoeÆients.Philips Labs Report #TR-86-036, September 20, 1986.[3℄ R.A. Caruana and B.J. Co�ey. Searhing for Optimal FIR Multiplierless Digital Filters with SimulatedAnnealing. Philips Labs Report #TR-88-031, Marh 21, 1988.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 13Experimentally Determining Regions of Related Solutions for Graph BisetionProblemsTed Carson and Russell ImpagliazzoUniversity of California, San Diego,Loal searh heuristi algorithms (e.g. Metropolis, simulated annealing [5, 7℄, WalkSAT [1℄, Go-With-the-Winners [2, 3, 4℄, et.) present intuitively appealing mehanisms to mix greedy behavior with diversity, andhave ahieved remarkable suess on some problem domains. However, it is often the ase that there is littleunderstanding, either theoretial or empirial, of why a heuristi sueeds or fails for various problem do-mains, or of how to optimize a method for a partiular domain. Implementations of these algorithms for hardombinatorial optimization problems is therefore often by trail-and-error, and performane preditability andon�dene are low.We propose a general method for the experimental study of suh heuristis. This method is intended torelate performane of a heuristi diretly to the ombinatorial features of the searh graph upon whih itoperates. To do this we gather statistis with respet to the lustering and onnetedness of solutions withroughly the same ost. Sine for small osts these solutions are rare this annot be done simply by randomsampling. However, if the sub-graphs of low ost solutions have the a property alled \loal expansion"(intuitively meaning that there are a few highly onneted omponents overing the sub-graph), they anbe uniformly sampled by using a Go-With-the-Winners (GWW) algorithm [2, 3, 4℄. One we gather suhstatistis, they are used to give a quantitative analysis of the searh spae, de�ning key harateristis thata�et loal searh heuristi performane. This analysis is �nally used to build a ausal model of performanefor various heuristis.The method we propose an be divided into three phases: validation, mapping, and predition.Validation: Before we an use the data from the GWW algorithm, we must establish on�dene thatthe algorithm is sampling uniformly. This will be true if the searh graph has the loal expansion property,however we annot diretly test for or prove that this is the ase (else we ould prove e�etiveness of theGWW algorithm diretly!). We instead o�er falsi�able tests that this is the ase. These tests are intended toverify that the lowest ost solutions are being found, that known strutures in the searh spae are reeted inthe samples, that the samples and onsistent aross runs, and that the algorithm is behaving asymptotiallywith regard to its parameters.Mapping: One it is established that the GWW algorithm is generating uniform samples, these samplesan be used to build a map of the struture of the searh graph. We are interested in features of thesearh graph that a�et loal searh heuristis. The number of onneted omponents of the sub-graph ofsome quality. and the onnetedness (expansion) of these omponents are two suh features of partiularimportane.Predition: Using this map we an model what would happen if we applied a partiular loal searhheuristi to the problem. The entire run of the heuristi is modeled, and not just the �nal solution value. Inthis way the e�ets of various algorithm tehniques and parameters an be examined and optimized.Our method has the following advantages: 1) Causal models of heuristi performane are produedallowing us to predit the performane of an algorithm, and explain why it behaves as it does. In additionthis provides for prinipled ways to selet parameters of various algorithms, often a diÆult problem whenapplying general purpose heuristis. 2) The models are falsi�able in the sense of the natural sienes: i.e.although proofs of performane are not obtained by the experiments, onsequenes and preditions an berigorously tested. 3) Our method gives insight into whih problems are suseptible to a broad lass ofheuristis and whih are not.As an example of this method we onsidered the minimum bisetion problem. We examined problemsinstanes drawn from a random graph model, Gn;p;q , whih are generated by dividing a graph into a preferredbisetion and adding edges with high probability p between verties on the same side of the partition and

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 14

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550 600

im
ba

la
nc

e

bisection threshold

local optima
greedy optimization traces
GWW population average

10

20

30

40

50

60

70

80

90

100

150 200 250 300 350 400 450 500 550 600 650

im
ba

la
nc

e

bisection threshold

modified greedy algorithm
random/greedy mixed algorithm

average imbalance

with lower probability q between verties on opposite sides. Intuitively this \planted bisetion" inuenesthe searh spae by plaing a bias that solutions loser to the planted bisetion are of expeted lower value.We seleted a small separation between p and q where the problems are most diÆult.One we validated the uniformity of the GWW algorithm (10000 partiles and 4096 random walk steps fora 400 node and 1195 edge graph), we proeeded to map the searh graph for this problem. As expeted, thesearh spae was smoothly biased with lower uts ourring loser to the planted bisetion. Cuts that were atan average distane from the planted bisetion for their value were never loal minima. However, those thatwere farther than average from the planted bisetion were often loal minima. Further, greedy algorithmstended to move toward these bisetions with low uts but high distanes from the planted bisetion (left)and onsequently fail. These observations led to the reation of several simple algorithms designed to avoidthis overly optimized region by mixing random walks with greedy moves. We show the traes of two suhalgorithms (right). Algorithm A introdues a random walk when the greedy method �nds a plateau in thesearh spae, while algorithm B mixes greedy and random moves more smoothly.We see that the algorithms behaved as predited by the map of the searh spae, avoiding the diÆultregion of overly optimized bisetions. The map generated by our method proved aurate and useful foralgorithm reation and optimization. Referenes[1℄ B. Selman, H. Kautz, and B. Cohen. Loal searh strategies for satis�ability testing. In Cliques, Coloring,and Satis�ability: Seond DIMACS Implementation Challenge. Amerian Mathematial Soiety, 1996.[2℄ D. Aldous and U. Vazirani. \Go with the winners" Algorithms. In Pro. 35th IEEE Symposium onFoundations of Computer Siene (FOCS), pages 492{501, 1994.[3℄ Dimitriou, A., and Impagliazzo, R., Towards a Rigorous Analysis of Loal Optimization Algorithms",28th ACM Symposium on the Theory of Computing 1996.[4℄ Dimitriou, A., and Impagliazzo, R., Go-with-the-winners Algorithms for Graph Bisetion, SODA 98, pp.510-520.[5℄ M. R. Jerrum and G. Sorkin. Simulated annealing for graph bisetion. In Pro. 34th IEEE Symposiumon Foundations of Computer Siene (FOCS), pages 94{103, 1993.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 15[6℄ M. R. Jerrum and A. Sinlair. Condutane and the rapid mixing property of Markov hains: The ap-proximation of the permanent resolved. In Pro. 20th ACM Symposium on Theory of Computing (STOC),pages 235{244, 1988.[7℄ D. S. Johnson, C. R. Aragon, L. A. MGeoh and C. Shevon. Optimization by Simulated Annealing:An Experimental Evaluation, Part I (Graph Partitioning). Operations Researh 37 (1989), pages 865{892.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 16Optimization of Parallel Searh Using Mahine Learning and UnertaintyReasoningDiane J. Cook, Piotr J. Gmytrasiewiz, and Chiu-Che TsengUniversity of Texas at Arlington,Beause of the dependene AI tehniques demonstrate upon heuristi searh algorithms, researhersontinually seek more eÆient searh methods. Advanes in parallel and distributed omputing o�er potentialperformane improvement, and in response a number of approahes to parallel searh have been developed.While these approahes have many ontributions to o�er, determining the best use of eah ontribution isdiÆult beause of the diverse searh algorithms, mahines, and appliations reported in the literature.In response to this problem, we have developed the Eureka parallel searh engine that ombines manyof these approahes to parallel heuristi searh. Eureka is a parallel IDA* searh arhiteture that mergesmultiple approahes to task distribution, load balaning, and tree ordering, and an be run on a MIMDparallel proessor, a distributed network of workstations, or a single mahine with multithreading. Our goalis to reate a system that automatially selets an optimal parallel searh strategy for a given problem spaeand hardware arhiteture.A parallel searh algorithm requires a balaned division of work among proessors. One method ofdividing IDA* is to give a opy of the entire searh tree to eah proessor with a unique ost threshold [11℄.Using this approah, proessors searh the tree simultaneously to their own threshold and terminate whena goal is found. An alternative approah distributes the tree among proessors [4℄. Using this approah,the root node of the searh spae is given to the �rst proessor and other proessors are assigned subtreesof that root node as they request work. A ompromise between these approahes is to divide the set ofproessors into lusters [1℄. Eah luster is given a unique ost threshold, and the searh spae is dividedbetween proessors within eah luster.Beause one proessor may run out of work before others, load balaning is used to ativate the idleproessor. Approahes must be seleted for deiding when to load balane, whih proessor to approah formore work, and how muh work to share. In addition, methods for modifying the left-to-right order of thetree during searh an yield substantial performane improvements for serial and parallel searh algorithms.The Eureka system merges together many parallel searh strategies. Parameters an be set that ontrolthe task distribution strategy, the load balaning strategies, and the ordering tehniques. To automate theseletion of parallel searh strategies, Eureka The system searhes a sampling of the spae and alulatessearh spae features inluding average branhing fator, average heuristi estimate error, tree imbalane,heuristi branhing fator, and heuristi distane estimate of the root. Information desribing the hardwareis also used suh as the number of proessors and average ommuniation lateny.Initially, we used C4.5 to indue a deision tree from pre-lassi�ed training examples. Training examplesrepresent runs of sample problem spaes with varying searh strategies, and the orret \lassi�ation" ofeah training example represents the searh strategy yielding the greatest speedup. For eah new problem,Eureka performs a shallow searh through the spae to ollet features desribing the new problem spaeand arhiteture. Features of the tree are alulated and used to index appropriate learned rules. Eurekathen initiates a parallel searh employing the seleted strategies.Two soures of unertainty arise in this domain that an prevent traditional mahine learning tehniquesfrom performing well. First, the searh spae feature values are estimates and thus not always aurate.Seond, there does not always exist a lear strategy winner for eah training ase. On some probleminstanes two or more strategy seletions perform almost equally well, and some run time varianes ouron many mahines.Due to these unertainties in the domain, we next model the problem with a belief network. We usean extension of belief networks known as inuene diagrams. Apart from nodes that represent unertainvariables (oval nodes), inuene diagrams also have deision nodes (retangular nodes) and a utility node

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 17

utility

speedup

idle
time

ordering

depth
overshoot

horizontal
overshoot

message
overhead

comm
overhead

hbf

numproc

imb
load
dist

initial
dist

b herror hroot

needed
iterations

bandwidth netdiam

latency

overhead

search
overhead

goal
angle

clusters

distrib

loadbal

giveaway

anticipFigure 4: A model of the fators that inuene speedup of parallel searh algorithms.Approah 1 Cluster 2 Clusters 4 Clusters C4.5 C4.5Fil BeliefNetworkSpeedup 55.30 60.98 58.79 57.14 86.76 68.66Table 2: Clustering Speedup Results(hexagonal node). By representing the way alternative deisions inuene the state of the domain, theinuene diagram an be used to arrive at optimal deisions.A graphial representation of our inuene diagram is shown in Figure 4. Deisions to be made inludethe task distribution strategy, number of lusters, amount of work to share, antiipatory load balaningtrigger, type of load balaning, and tree ordering. For our parallel searh problem, Eureka's utility node inFigure 4 diretly depends on a single node of the domain { speedup. Conditional probability tables modelingthe probabilisti dependenies between nodes in the network are learned from provided training data.We tested the ability of the inuene diagram to provide a basis of making parallel searh strategydeisions by omparing deisions based on predited speedup values from the inuene diagram built usingNetia with deisions based on the C4.5 learning system. To reate test ases, we ran 100 Fifteen Puzzleproblem instanes multiple times on 32 proessors of an nCUBE, one using eah parallel searh strategy inisolation. Features of the searh spae, and arhiteture are stored for eah problem.We ompared the results of Netia-seleted strategies on test data to C4.5-seleted strategies and to eahstrategy used exlusively for all problem instanes. Speedup results for various strategy deisions averagedover all problem instanes are shown in Table 2 below.From the results of this experiment, the belief network did outperform all of the �xed strategies as wellas C4.5 using all 100 problem instanes. C4.5Fil yielded the best results, but was only trained and tested onases with lear winners. Eah of the automated approahes to seleted searh strategies resulted in betterperformane than using just one �xed parallel searh strategy. These results indiate that mahine learningand unertainty reasoning tehniques an be e�etively used to perform automati seletion of parallel searhstrategies, and may be e�etive for other optimization problems as well.Referenes[1℄ D J Cook and R C Varnell. Maximizing the bene�ts of parallel searh using mahine learning. InProeedings of the National Conferene on Arti�ial Intelligene, pages 559{564. AAAI Press, 1997.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 18[2℄ Diane J Cook, Larry Hall, and Willard Thomas. Parallel searh using transformation-ordering iterative-deepening A*. International Journal of Intelligent Systems, 8(8):855{873, 1993.[3℄ Martin Frank, Piyawadee Sukavirija, and James D Foley. Inferene bear: designing interative interfaesthrough before and after snapshots. In Proeedings of the ACM Symposium on Designing InterativeSystems, pages 167{175. Assoiation for Computing Mahinery, 1995.[4℄ V Kumar and V N Rao. Salable parallel formulations of depth-�rst searh. In Kumar, Kanal, andGopalakrishan, editors, Parallel Algorithms for Mahine Intelligene and Vision, pages 1{41. Springer{Verlag, 1990.[5℄ Henry Lieberman. Integrating user interfae agents with onventional appliations. In Proeedings of theACM Conferene on Intelligent User Interfaes. Assoiation for Computing Mahinery, 1998.[6℄ A Mahanti and C Daniels. SIMD parallel heuristi searh. Arti�ial Intelligene, 60(2):243{281, 1993.[7℄ Nihar R. Mahapatra and Shantanu Dutt. New antiipatory load balaning strategies for parallel A*algorithms. In Proeedings of the DIMACS Series on Disrete Mathematis and Theoretial ComputerSiene, pages 197{232. Amerian Mathematial Soiety, 1995.[8℄ Steven Minton. Automatially on�guring onstraint satisfation programs: a ase study. Constraints,1(1):7{43, 1996.[9℄ Peter Norvig and D Cohn. Adaptive software. PC AI Magazine, 1997.[10℄ Judea Pearl. Probabilisti Reasoning in Intelligent Systems: Networks of Plausible Inferene. MorganKaufman, 1988.[11℄ Curt Powley and Rihard E Korf. Single-agent parallel window searh. IEEE Transations on PatternAnalysis and Mahine Intelligene, 13(5):466{477, 1991.[12℄ S. Russell and P. Norvig. Arti�ial Intelligene: A Modern Approah. Prentie Hall, 1994.[13℄ Ken Calvert Samrat Bhattaharjee and Ellen W Zegura. An arhiteture for ative networking. In HighPerformane Networking, 1997.[14℄ R. D. Shahter. Evaluating inuene diagrams. Operations Researh, 34:871{882, 1986.[15℄ Peter Steenkiste, Allan Fisher, and Hui Zhang. Darwin: resoure management for appliation-awarenetworks. Tehnial Report CMU-CS-97-195, Carnegie Mellon University, 1997.[16℄ Sott Taylor, David Levine, Krishna Kavi, and D. J. Cook. A omparison of multithreading implemen-tations*. In Yale Multithreaded Programming Workshop, 1998.[17℄ Jian Xu and Kai Hwang. Heuristi methods for dynami load balaning in a message-passing multi-omputer. Journal of Parallel and Distributed Computing, 18(1):1{13, 1993.[18℄ Songnian Zhou. A trae-driven simulation study of dynami load balaning. IEEE Transations onSoftware Engineering, 14(9):1327{1341, September 1988.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 19Adaptive Heuristi Methods for Maximum CliqueArun Jagota y and Laura A. Sanhis zy University of California, Santa Cruz; z Colgate University,Maximum Clique is the problem of �nding a largest set of pairwise adjaent verties in a given graphG [5℄. This problem is NP-hard even to approximate well [1℄, and arises in several appliations [2℄. Thisproblem has attrated onsiderable attention over the years (see the review published by Pardalos and Xuewith about 260 referenes [15℄).For NP-hard problems suh as Maximum Clique no eÆient exat algorithms exist. Heuristi methodstherefore abound. In reent years researhers have begun to reognize the value of inorporating adaptationinto heuristi methods (as one example, see [4℄). This short paper surveys our own work along these lines[11, 7, 17℄ whih inorporates adaptation into multiple restarts methods in whih eah restart performsrandomized loal searh.We found in extensive experiments on Maximum Clique that the adaptive restarts we employed onsis-tently worked no worse (and often better) than nonadaptive restarts, while imposing an almost negligibleomputational overhead. Simple forms of adaptation are also easy to add on to otherwise nonadaptivemethods. Thus it seems there is no reason not to do so.In this short paper we present our methods, then disuss some experimental results. Two types ofadaptation are explored|one in whih vertex weights are adapted, and the other in whih the initial liqueis adapted. On di�erent types of graphs, the di�erent types of adaptation seem to work better.The Adaptive MethodsThe algorithms are best desribed as evolving from a base algorithm, whih we all randomized greedy searh(RGS).FinalClique RGS(Graph G, WeightVetor w, Clique Ci)// w = (wi) where wi is vertex i's weight1. C = Ci;2. S = f v 2 GnC j v is adjaent to every vertex in Cg;3. while S is not empty do4. Pik vertex i from S with probability wi=Pj2S wj ;5. Add vertex i to C;6. Reompute S as in step 2;7. return C;RGS works by extending the initial, possibly empty, lique Ci to a �nal lique C by adding feasibleverties one by one in a randomized greedy way. The greediness omes in in step 4, sine the hosen non-uniform distribution favors piking those verties from S that have large weights. The idea is to add somerandomization to avoid the usual traps that greedy falls into but not too muh so as to totally wipe out thegreediness. The randomization in RGS will also work well with multiple restarts.Next, we desribe a nonadaptive restarts method, alled NA, on top of RGS. NA takes two argumentsin addition to the graph: a vetor w of weights on the verties, and the number k of restarts.FinalClique NA(Graph G, WeightVetor w, integer k)

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 201. C = ;;2. for r = 1 to k do3. Cr = RGS(G, w, ;);4. C = larger-set-of (C, Cr);5. return C;Notie that NA always alls RGS from the same initial lique, the empty set. It is obvious why NA willwork better than (a single all to) RGS.In our work, we investigated two hoies for w = (wi): (i) wi = 1 for all i and (ii) wi = d(i) for alli. Here d(i) is the degree of vertex i in the given graph G. We will denote the �rst hoie as NA(1) andthe seond as NA(d). Interestingly, despite the intuitive appeal of the seond weighting (verties in largeliques have large degree), we found via extensive experimentation that NA(d) worked better than NA(1)only oasionally (and sometimes worse). Perhaps the restarts o�set any possible bene�ts of degree-basedweighting.The third method, whih we all AW, is an extension of NA that adapts the vertex weights from restartto restart.FinalClique AW(Graph G, WeightVetor w, integer k)1. C := ;;2. �1 := �2 := 1;3. for r := 1 to k do4. Cr := RGS(G, w, ;);5. if jCrj > jCj then6. wi := wi + �1 � (jCrj � jCj) for all i 2 Cr;7. else8. wi := wi + (�1 + �2 � (jCrj � jCj)) for all i 2 Cr;9. C := larger-set-of (C, Cr);10. �1 := 1:01� �1;11. �2 := 0:99� �2;12. return C;The vertex weights are adapted as follows. AW keeps trak of the size of the best lique it has found sofar. If in the next restart, it �nds a better lique then it \rewards" the verties in the lique by inreasingtheir weight, otherwise it \punishes" them by dereasing their weight. The magnitude of the reward (orpunishment) is made to depend on the magnitude of the improvement (or worsening) and also on the restartnumber. With regards to the latter, an improvement found in a late restart ounts for more, as does aworsening found in an early restart.We �nd that the method exhibits the following harateristis. If an improved lique is found in somerestart, AW fouses subsequent searh into its \neighborhood". If no further improvement is found soonenough, the searh gradually gets defoused from this neighborhood.In extensive testing, AW often found signi�antly larger liques than NA in the same amount of allotedtime [11, se 4.3℄.Like with NA, we investigated AW with the same two types of initial weighting, denoted AW(1) andAW(d) respetively. One again, there was no lear winner between AW(1) and AW(d). AW(1) seemed towork a bit better overall. Perhaps the adaptive restarts o�set any possible bene�t of degree-based weighting.The fourth method, whih we all AIC, is an alternative extension of NA that adapts the initial lique,rather than the vertex weights, from restart to restart. Thus, unlike AW, AIC does not always start a restartfrom the same initial lique. For the same number of restarts, AIC runs faster than AW beause it oftenstarts from a large lique and thus has to grow it less. On the other hand, in extensive experiments we �nd

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 21that AIC often takes many more restarts to �nd the same quality solution than does AW. The reason forthis is not lear.FinalClique AIC(Graph G, WeightVetor w, integer k)1. C = ;;2. Ci = ;;3. for r = 1 to k do4. Cr = RGS(w, Ci);5. if jCrj > jCj then6. Ci = Cr;7. Ci = Cin f one randomly-hosen vertex in Ci g8. C = larger-set-of (C, Cr);9. return C;AIC exhibits harateristis similar to those of AW, fousing the searh into the neighborhood of a newly-found better lique, defousing subsequent searh gradually when this does not lead to an improvement.Like with NA and AW, we investigated AIC with the same two types of weighting, denoted AIC(1)and AIC(d) respetively. One again the results were mixed (sometimes AIC(1) worked better, sometimesAIC(d)).The AIC priniple was inuened by the work of T. Grossman [6℄ where the power of a simple greedyalgorithm for Maximum Clique was boosted signi�antly and demonstrably (via extensive experiments)by adaptive initialization of a somewhat similar kind. Adaptations from restart to restart have also beenused in [4℄ and [3℄.Most of our experiments were done on slightly di�erent versions of NA, AW, and AIC in whih the numberof restarts given to eah method was not �xed in advane. Rather, the restart parameter k in eah of thesemethods was replaed by a \no progress" parameter np, and the method terminated when np suessiverestarts led to no improvement in solution quality. Although this does not redue the number of parametersto be set, the np parameter is learly superior to the k parameter.Experimental Results SummaryThis setion reports a summary of our omputational experiments and results on NA(1), NA(d), AW(1),AW(d), AIC(1), and AIC(d). These methods were all evaluated on di�erent kinds of graphs: (i) graphswith prespei�ed maximum lique size designed to be hard for the problem, (ii) random graphs of variousdensities, and (iii) highly ompressible graphs of a ertain type.The graphs of type (i) are desribed in detail in [11, 17℄. Experiments were onduted on a variety ofgraphs (parametrized by maximum lique size C, and density D) of this type on 800 verties. The valueof the np parameter was (by trial and error) �xed to 100, for all the methods. On 800-vertex graphs ofdensity 0.70, AW(1) worked best. Interestingly, NA(1) worked better than AIC(1). On graphs of density0.9, AW(1) still worked best. This time however AIC(1) worked better than NA(1). The di�erenes betweenthe performanes were striking for the larger values of C. On graphs of density 0.9, AIC(1) worked best ongraphs with larger C. AW(1) worked better than NA(1). From these experiments, the following lear trendsemerged: AIC(1) worked better on the denser graphs, AW(1) on the less dense graphs; for the same density,the solution quality di�erential was highest on graphs with the larger liques.The graphs of type (ii) are parametrized by p, the probability of independently introduing an edgebetween a pair of verties. The six methods were tested on ten 1000-vertex graphs eah for three values ofp. (The variane in the results was seen to be small, indiating that the small sample size should suÆe.)For p = 0:5 and p = 0:7, there was little di�erene in solution quality. For p = 0:99, AIC(d) worked best,

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 22with AIC(1) a lose seond. The remaining methods were signi�antly poorer, with AW(1) edging out theothers.The graphs of type (iii) are highly ompressible in nature, and were designed to eliit poor performanefrom simple methods. It is diÆult to desribe these graphs here, the reader is refered to [10℄. (In thatpaper it was experimentally demonstrated that these graphs weed out the poorer methods from the betterones, while random graphs don't.) Experiments were onduted on �fty 100-vertex graphs of this type. Onaverage, there was little di�erene between the solution quality found by all methods. AW(1) edged out theothers. Both NA methods were a lose seond. Both AI methods were a bit poorer.Here we examine how well the new algorithms perform on these graphs. To failitate omparisons, weevaluate the new algorithms on the exat same graphs evaluated earlier. The results are presented in thefull paper; here we summarize them. Both the NA algorithms perform very well. This orrelates well withthe previous result that NA0(1,400) and NA0'(1,400) also worked very well. Here NA0' is a variant of NA0whih begins from the initial state V rather than from ;. Note that the only di�erene between NA and NA0is in the number of restarts used. It is reassuring to see that the urrent performane of NA(1,150) is almostidential to that of the earlier reorded performane of NA0(1,400). The AW(1) algorithm performs thebest among the new algorithms; its performane is virtually idential to that of NA0'(1,400) whih workedbest in the original experiments. Note that AW(1) ahieves this performane in roughly three-�fths as manyrestarts as did NA0'(1,400). Interestingly, both AI algorithms perform somewhat poorer.Conlusions and Future WorkNo single winner emerged. Adding on adaptation to NA nonetheless never hurt (and often helped onsider-ably).Our methods are easily extendible to a wider lass of problems, that we all indued subgraph optimizationproblems, de�ned as follows: given a graph G and a property P on vertex-indued subgraphs of G, we wishto �nd a maximum-ardinality set U � V (G) whih satis�es P. Maximum Clique is a member of this lass.There is a general theorem establishing intratability of a large sublass of problems in this lass [14, 13℄.Our future work will involve testing how well our methods work on some other problems in this lass.Referenes[1℄ S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�ation and hardness of approxi-mation problems. In The Proeedings of the 33rd Annual IEEE Symposium on Foundations of ComputerSiene, pages 14{23, 1992.[2℄ E. Balas and C.S. Yu. Finding a maximum lique in an arbitrary graph. SIAM Journal on Computing,15(4), November 1986.[3℄ S. Baluja and S. Davies. Combining Multiple Oprimization Runs with Optimal Dependeny Trees.Tehnial Report, Department of Computer Siene, Carnegie-Mellon University, 1997.[4℄ K.D. Boese, A.B. Kahng, and S. Muddu. A new adaptive multi-start tehnique for ombinatorial globaloptimizations. Operations Researh Letters, 16:101{113, 1994.[5℄ M.R. Garey and D.S. Johnson. Computers and Intratability: A Guide to the Theory of NP-Completeness.Freeman, New York, 1979.[6℄ T. Grossman. Applying the INN model to the MaxClique problem. In D.S. Johnson and M.A. Trik,editors, DIMACS Series: Seond DIMACS Challenge, pages 125{145. Amerian Mathematial Soiety,1996. Proeedings of the Seond DIMACS Challenge: Cliques, Coloring, and Satis�ability.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 23[7℄ A. Jagota. An adaptive, multiple restarts neural network algorithm for graph oloring. European Journalof Operational Researh, 93:257{270, 1996.[8℄ A. Jagota and M. Garzon. On the Mappings of Optimization Problems to Neural Networks. In Proeedingsof World Congress on Neural Networks 1994, pages 391{398, IEEE, 1994.[9℄ J.H.M. Korst and E.H.L. Aarts. Combinatorial optimization on a Boltzmann mahine. Journal of Paralleland Distributed Computing, 6:331{357, 1989.[10℄ A. Jagota and K.W. Regan. Performane of neural net heuristis for maximum lique on diverse highlyompressible graphs. Journal of Global Optimization, 10:439{465, 1997.[11℄ A. Jagota, L. Sanhis, and R. Ganesan. Approximating maximum lique using neural network andrelated heuristis. In D.S. Johnson and M.A. Trik, editors, DIMACS Series: Seond DIMACS Challenge,pages 169{204. Amerian Mathematial Soiety, 1996. Proeedings of the Seond DIMACS Challenge:Cliques, Coloring, and Satis�ability.[12℄ D.S. Johnson, C.R. Aragon, L.A. MGeoh, C. Shevon. Optimization by Simulated Annealing: An Ex-perimental Evaluation, Part II (Graph Coloring and Number Partitioning). Operations Researh, 39:378{406, 1991.[13℄ C. Lund and M. Yannakakis. The approximation of maximum subgraph problems, In Proeedings of20th International Colloquium on Automata, Languages, and Programming, Leture Notes in Comput.Si. 700, Springer-Verlag, 40-51.[14℄ M. Lewis and M. Yannakakis; The Node-Deletion Problem for Hereditary Properties is NP-Complete,Journal of Computer Systems and Sienes, 20, (1980).[15℄ P.M. Pardalos and J. Xue. The maximum lique problem. Journal of Global Optimization, 4:301{328,1994.[16℄ L. Sanhis. Test Case Constrution for the Vertex Cover Problem. in N. Dean and G.E. Shannon,editors, Computation Support for Disrete Mathematis, pages 315{326. Amerian Mathematial Soiety,1994.[17℄ L. Sanhis and A. Jagota. Some experimental and theoretial results on test ase generators for themaximum lique problem. INFORMS Journal on Computing, 8:2:87{102, Spring 1996.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 24Probabilisti Modeling for Combinatorial OptimizationShumeet Baluja, Sott DaviesCarnegie-Mellon University,This work originated in an attempt to reate an expliit probabilisti model of the behavior of genetialgorithms [12℄[17℄[18℄. Geneti algorithms, or GAs, an be viewed as reating impliit probabilisti modelsover possible solutions by maintaining a population of previously evaluated solutions. Rather than usingexpliit models of how the parameters of high-quality solutions tend to relate to one another, GAs attempt topreserve these relationships by using rossover-based reombination operators on members of the populationin order to generate new andidate solutions.One attempt towards making the GA's probabilisti model more expliit was the Population-BasedInremental Learning algorithm (PBIL) [1℄[3℄; this was further explored in [19℄[20℄[16℄. PBIL uses a verysimple probabilisti model that does not model inter-parameter dependenies | eah parameter is handledindependently. The PBIL algorithm works as follows: instead of using reombination/rossover to reate anew population, a real-valued vetor, P, is sampled. Assuming the solutions are represented as bit strings,P spei�es the probability of generating a 1 in eah bit position. Initially, all values in P are set to 0.5, sothat solutions are generated from the uniform distribution over bit strings. A number of solution vetors aregenerated by stohastially sampling eah bit independently aording to P. The probability vetor is thenmoved towards the highest-quality solution vetors thus generated, in a manner similar to the updates usedin unsupervised ompetitive learning [15℄. This yle is then repeated. The �nal result of the PBIL algorithmis the best solution generated. This basi version of PBIL is similar to early work in ooperative systemsof disrete learning automata [23℄ and to the Bit-Based Simulated Crossover algorithm [22℄. Numerousextensions to this basi algorithm are possible; many are similar to those ommonly used with genetialgorithms, suh as variable or onstant mutation rates, maintenane of the best solution found throughoutthe searh, parallel searhes, or loal optimization heuristis.One of the goals of rossover in GAs is to ombine \building bloks" from two di�erent solutions to reatenew sampling points. Beause all parameters are modeled independently, PBIL annot propagate buildingbloks in a manner similar to standard GAs. Nonetheless, in a variety of standard benhmark problems usedto test GAs and Simulated Annealing approahes, PBIL performed extremely well [2℄. While GAs attemptto preserve important relationships betweem solution parameters, they do not do so expliitly, and so mustrely on the reombination operator to ombine random subsets of two \parent" solutions in hopes of omingup with a hild solution that maintains the important building bloks. Would algorithms that employedprobabilisti models in whih these relationships were aounted for expliitly perform even better?The �rst extension to PBIL that aptured dependenies was Mutual Information Maximization for InputClustering (MIMIC) [7℄. MIMIC measured the mutual information [10℄ between eah pair of parametersaross a set of high-quality solutions, and then used these statistis to greedily build a probabilisti model inthe form of a Markov hain over the solution parameters. Subsequent researh [4℄ generalized this Markovhain formalism to Bayesian networks [21℄. In partiular, the same type of statistis used by MIMIC wereused to learn a more general lass of models | namely, trees rather than hains | and the optimal modelwithin that lass was found using Chow and Liu's algorithm [9℄. Figure 5 illustrates the types of models usedby PBIL, MIMIC, and this tree-based algorithm on a noisy version of a two-olor graph oloring problem.We use Bayesian network notation for our graphs: an arrow from a node X to a node Y indiates that Y 'sprobability distribution is onditionally dependent upon the value of X . The hain- and tree-shaped modelsshown were automatially learned during the proess of optimization. (Note, however, that learned networksmay not typially mirror optimization problems' strutures so losely | in this example, the noise atuallyhelped the algorithms reover the problem struture.)Researhers have onduted numerous empirial omparisons (e.g. [19℄,[2℄, [4℄, [13℄) of geneti algorithmsand algorithms based on probabilisti modeling. Surprisingly, in many of the larger, real-world problems,simple models that do not maintain dependeny information (suh as PBIL) outperform GAs, whih attempt

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 25
9

19

21
17

11

8

13

6 22

18

7

16

0 23 3

12

215

4 10

201415

14 4 10 5 1 2 3 23

0161872119922

6 13 17 11 8 12 20 15

9

19

21

5

2

1
16 7

8

0

23

3

22

12

20

14

4 15
17

18
11

10
13

6

������������0 1 2 21 22 23B:

D:

C:

A: Figure 5: A: A two-olor graph-oloringproblem. B: the empty dependeny graph ef-fetively used by PBIL. C: the Markov hainlearned by a MIMIC-like optimization algo-rithm. D: the Bayesian network learned bythe tree-based optimization algorithm.to apture this information impliitly. On test problems designed to exhibit large amounts of inter-parameterdependenies, PBIL's suess was less preditable [11℄. However, in the large majority of these problems,the dependeny-tree-based algorithm onsistently outperformed the other optimization tehniques [6℄.Perhaps the most interesting result found in this line of study is that the performane of the ombina-torial optimization algorithms onsistently improved as the auray of their statistial models inreased:trees generally performed better than hains, and hains generally performed better than models with nodependenies. This suggests the possibility of using even more omplex probabilisti models, although usingmodels that are too omplex would hurt the optimization algorithms by preventing them from performingenough exploration of the searh spae. Unfortunately, when we move toward network models in whihvariables an have more than one parent variable, the problem of �nding an optimal network with whih tomodel a given set of data beomes NP-omplete [8℄. Heuristis have been developed for �nding good networksin suh situations (e.g. [14℄), and employing suh methods in onjuntion with ombinatorial optimizationis an exiting diretion for future researh. However, the O(n2) running time per iteration (where n is thenumber of solution parameters) required by the hain- and tree-based optimization algorithms is alreadyprohibitively expensive on large-sale problems.This omputational problem an be alleviated by learning expensive probabilisti models only to generatestarting points for simpler, faster optimization algorithms. COMIT [5℄ (for \Combining Optimizers withMutual Information Trees") learned tree-based probabilisti models from the best solutions found duringprevious runs of hill-limbing or PBIL, and stohastially sampled these models to generate starting pointsfor further runs of these algorithms. In the experimental results, employing the tree-based models in thismanner typially signi�antly improved the solutions found by the faster optimization algorithms. Usingmore sophistiated probabilisti models for similar restarting algorithms is an interesting possible line ofresearh, as is extending this methodology to optimization in real-valued spaes.Referenes[1℄ S. Baluja. Population-Based Inremental Learning: A Method for Integrating Geneti Searh BasedFuntion Optimization and Competitive Learning. Tehnial Report CMU-CS-94-163, Carnegie MellonUniversity, 1994.[2℄ S. Baluja. Geneti Algorithms and Expliit Searh Statistis. In M.C. Mozer, M.I. Jordan, and T. Petshe,editors, Advanes in Neural Information Proessing Systems 9. MIT Press, 1997.[3℄ S. Baluja and R. Caruana. Removing the Genetis from the Standard Geneti Algorithm. In A. Priedi-tis and S. Russell, editors, The International Conferene on Mahine Learning, 1995 (ML-95). MorganKaufmann Publishers, 1995.[4℄ S. Baluja and S. Davies. Using Optimal Dependeny-Trees for Combinatorial Optimization: Learningthe Struture of the Searh Spae. In Jr. D. H. Fisher, editor, The International Conferene on MahineLearning, 1997 (ML-97). Morgan Kaufmann Publishers, 1997.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 26[5℄ S. Baluja and S. Davies. Fast Probabilisti Modeling for Combinatorial Optimization. In Proeedings ofthe 15th National Conferene on Arti�ial Intelligene (AAAI-98), 1998.[6℄ S. Baluja and S. Davies. Pool-Wise Crossover in Geneti Algorithms: An Information-Theoreti Per-spetive. In Proeedings of FOGA-98, 1998.[7℄ J. De Bonet, C. Isbell, and P. Viola. MIMIC: Finding Optima by Estimating Probability Densities. InM.C. Mozer, M.I. Jordan, and T. Petshe, editors, Advanes in Neural Information Proessing Systems,1997.[8℄ D. Chikering. Learning Bayesian networks is NP-omplete. In Learning from Data, pages 121{130.Springer-Verlag, 1996.[9℄ C. Chow and C. Liu. Approximating disrete probability distributions with dependene trees. IEEETrans. on Info. Theory, 14:462{467, 1968.[10℄ T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.[11℄ L.J. Eshelman, K.E. Mathias, and J.D. Sha�er. Convergene Controlled Variation. In Pro. Founda-tions of Geneti Algorithms 4. Morgan Kaufmann Publishers, 1996.[12℄ D. E. Goldberg. Geneti Algorithms in Searh, Optimization and Mahine Learning. 1989.[13℄ J. R. Greene. Population-Based Inremental Learning as a Simple Versatile Tool for Engineering Opti-mization. In Proeedings of the First International Conf. on EC and Appliations, pages 258{269, 1996.[14℄ D. Hekerman, D. Geiger, and D. Chikering. Learning Bayesian networks: The ombination of knowl-edge and statistial data. Mahine Learning, 20:197{243, 1995.[15℄ J. Hertz, A. Krogh, and R. G. Palmer. Introdution to the Theory of Neural Computing. Addison-Wesley,1991.[16℄ M. Hohfeld and G. Rudolph. Toward a Theory of Population-Based Inremental Learning. In Interna-tional Conferene on Evolutionary Computation, pages 1{5, 1997.[17℄ J. H. Holland. Adaptation in Natural and Arti�ial Systems. Addison-Wesley, 1975.[18℄ K. De Jong. An analysis of the behavior of a lass of geneti adaptive systems. Ph.d. thesis, 1975.[19℄ A. Juels. Topis in Blak-box Combinatorial Optimization. Ph.D. Thesis, University of California -Berkeley, 1996.[20℄ V. Kvasnia, M. Pelikan, and J. Pospial. Hill Climbing with Learning (An Abstration of GenetiAlgorithm). In Proeedings of the First International Conferene on Geneti Algorithms (MENDEL, '95),pages 65{73, 1995.[21℄ J. Pearl. Evidential reasoning using stohasti simulation of ausal models. Arti�ial Intelligene,32:245{257, 1987.[22℄ G. Syswerda. Simulated Crossover in Geneti Algorithms. In D. L. Whitley, editor, Foundations ofGeneti Algorithms 2, pages 239{255. Morgan Kaufmann Publishers, 1993.[23℄ M. Thathahar and P. S. Sastry. Learning optimal disriminant funtions through a ooperative gameof automata. IEEE Transations on Systems, Man, and Cybernetis, 17(1),

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 27
Figure 6: Diagramati view of lusteringAdaptive Approahes to Clustering for Disrete OptimizationWray Buntine, Lixin Su, and A. Rihard NewtonUniversity of California, Berkeley,Many optimization algorithms in the �eld of omputer aided design (CAD) of VLSI systems su�er fromthe fat that they do not sale linearly with the problem omplexity. Clustering tehniques have beenadopted in some of these algorithms to address omplexity but they are unfortunately limited to lassesof problems where good intuitions about loality hold. In this paper, we demonstrate that learning goodlusters is feasible for hyper-graph partitioning problem using a learning model for adaptive lustering.IntrodutionCAD tasks like plae and route and hyper-graph partitioning use a tehnique alled lustering to ahievesigni�ant performane inreases. In fat, on those problems where lustering is used, it seems to be essentialto ahieve state-of-the-art performane on large problems. Clustering an be applied to SAT, plae-and-routeand hyper-graph partitioning by �nding "nearby" nodes/variables and foring their values to be idential.Consider the hypergraph partitioning problem. In this, a hypergraph (a graph with n-ary edges insteadof binary edges, e.g., VLSI iruit) is to be split into two piees suh that the number of hyper-edges split isminimum. Clustering on this works as follows: ertain nodes are tied together or lustered so that, thereafter,they always our in the same partition. Nodes so tied together form a single super-node and indue anew problem with fewer nodes and often fewer hyper-edges (these merge or are absorbed within a singlesuper-node) For a generi graph partitioning problem (where all hyper-edges are of size 2), a representativelustering is illustrated on the right of Figure 1. Notie the indued edges onthe redued problem.An engineering-oriented study of several methods appears in [Hauk and Boriello, 1997℄.Clustering has typially been based on ad ho heuristis for a neighborhood metri together with standardlustering algorithms from the pattern reognition ommunity, suh as agglomerative lustering. Methodsusing lustering typially generate a sequene of solutions to the one problem. The urrent solution ismapped down into the redued spae, some optimization is done on this redued problem, and then thesolution mapped bak up into the original spae, thus a�eting a non-loal move guided by the lustering.Searh then ontinues in the full spae, and the proess is repeated. Sine the sequene of solutions isdisarded, lustering is urrently a stati approah that annot improve during an extensive run on a singleproblem or on multiple problems.Clustering in Hypergraph partitioningThe optimization problem we onsider here is standard hypergraph partitioning where the area of eahpartition is restrited to be less than 55% of the total area. Experiments were run on some of the larger

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 28problems in the ACM/SIGDA Layout Benhmark Suite from MCNC 1, where our opy was obtained fromCharles Alpert's website at UCLA. Smaller problems are uninteresting for lustering methods.One reent innovation in lustering is by Hagen and Kahng [3℄ whereby the intermediate results of loalsearh are ombined to reate lusters. Note a p-way partition of a variable spae indues a lustering withp super-nodes. Overlaying k binary partitions to form their �nest multi-way partitioning, similarly, induesa lustering with up to 2k super-nodes. Hagen and Kahng reommend using k = 1:5 log2 C partitions forthis onstrution, for C the number of nodes. Experiments on benhmarks reveal the problems here. As oneinreases k, the number of nodes in the indued lustering inreases. For k > log2 C the indued lusteringan have up to C nodes, so nodes no longer our in the same �nest partition by hane. For k large enough,the omplexity of the searh on the indued problem an be just as bad as the ompexity on the full problem.Note that if you are learning lusters from data \orretly," in some sense, then as k inreases, the quality ofthe lustering should only improve as you get more data, not derease as is the ase here. For k smaller thanlog2 C, lustering is now introduing a random element, and thus as k dereases, the results of the searhon the indued problem should degrade to produe a poor partition. Yet standard onnetivity lusteringmethods work well, essentially with k = 0. Hagen and Kahng found k = 1:5 log2 C to be a happy mediumproduing ompetitive results.Our simple probabilisti model of loal minima is as follows: we laim harateristis of the globaloptimum our with frequeny (1� q) in the perturbed loal optimum. When we sample a loal minima, itwill have on average noise q on top of the global minimum. Therefore, to estimate whether a harateristiX holds in the global minimum, we estimate the frequeny with whih X ours in loal minima. If thisfrequeny is greater than (1 � q), then under this model with high probability, X also ours in the globalminimum. Note that q is a free parameter in our model. We laim di�erent optimization problems withhave di�erent intrinsi noise levels in the broader solution neighborhood, and thus we leave q free to vary.Thus statistial information about the loal minima are used to infer harateristis of the global minimum.We apply this model to lustering as follows: the harateristis X we investigate take the form \node Aand node B fall in the same partition." We have taken 200 FM runs to �nd a sample of loal minima andhave reorded partitions as well as the least ut-size for the entire 200 FM runs, We have taken statistisfrom these samples and for every pair of nodes (A;B) we then estimate the frequeny with whih they liein the same partition. For a given noise level q under the simple model above, we an therefore estimatewhih nodes should belong in the same partition of the global minimum. Contingent on a value for q, thisinformation is then ollated for all nodes (A;B) to produe a lustering of the nodes, sine \node A and nodeB" fall in the same partition is an equivalene relation. This approah is labelled \adaptive lustering".ExperimentsTo provide a benhmark, we have ompared these results against lustering obtained using the agglomerativelustering method of Alpert et al. [1℄ exepting that reursive re-evaluation of the onnetivity measure is notdone. We also looked at 8 di�erent levels of agglomeration and hose the one giving the minimum ut-size. Welaim these modi�ations are fair sine no reursive re-evaluation was done for the adaptive lustering methodabove, and the hoie of optimum ut-size from 8 an only favor this method. Connetivity lustering andadaptive lustering are evaluated by running a high-performane non-lustering algorithm on them, ASFMof [2℄. Beause this is run on the lustered/redued problems, its omputation time is insigni�ant. Wealso extrated the best published results for eah iruit from the literature [5, 4, 3, 2℄. q is set in adaptielustering by running the algorithm for q = 0:8; 0:85; 0:9; 0:95; 0:97 and piking the best, the additionalomputational overhead being insigni�ant. The geometri mean of the ut-sizes are reported in Table 1.Also note that onnetivity lustering produed problems with nodes/hypergraphs having a geometri meanof 2142/2424 whereas for adaptive lustering, this is 704/1046.1Being industry2, industry3, avq-small, avq-large, S9234, S13207, S15850, S35932, SS38417, S38584, 19ks and primary2,with nodes and hyper-edges of the order of 8000{20000.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 29best published onnetivity lustering adaptive lustering on 200 FM best of 200 FM81.25 99.22 93.56 165.27Table 3: Geometri mean ut-sizes from 12 industry benhmarkFrom the results we an onlude the following: (1) The adaptive lustering method generates signi�antlysmaller hyper-graphs with signi�antly smaller ut-size. The di�erene is generally onsistent aross iruits.Thus adaptive lustering is signi�antly superior in forming lusters to methods attaining urrent bestpublished. (2) Running ASFM one on a adaptive lustered hyper-graph, and no other omputation, theresults on the far smaller lustered hyper-graph are near best published for the problem. Typial state-of-art algorithms, onsiderably more sophistiated with reursive lustering and multiple iterations, sorea geometri mean of about 86 on this measure so this simple approah is near state-of-the-art. (3) Thelustering results provide a full 200% inrease over the best ut-size resulting from the entire 200 FM runs.Thus there is lear evidene that under this model we learnt signi�ant information from the loal minimaabout the global minimum.Notie the method of adaptive lustering desribed above uses 200 runs of FM as its sample. As a �nalexperiment, we produed a hybrid of adaptive lustering and onnetivity lustering using Bayesian statistis.We mapped the onnetivity of an edge (A;B), (A;B), into a probability distribution on the probabilitythat nodes A and B lie in the same partition at the global maximum. Lets all this probability p(A;B).From alibration data for numerous problems, we modeled the probability p(A;B) with a Beta distributionwith mean m(X) = 0:5 + 0:5 � ((A;B)=0:6)0:7 and sample size 5. This means we plae a density funtionover p(A;B). Data from the FM runs is then used to update this Beta distribution using binomial samplingto obtain an estimate of p(A;B) inorporating both the data from the FM runs and the onnetivity (A;B).In statistial terms, the initial Beta distribution is a onjugate prior and the information from the sample(nodes A;B in same partition or not) is its omplementary likelihood funtion. Using k = 0:8 log2 C, a halfthat of Hagen and Kahng, we were able to ahieved results with this method omparable to the adaptivelustering on 200 FM runs. Moreover, the method yields lusters idential to onnetivity lustering fork = 0. ConlusionIn this paper, we proposed a simple probabilisti model of loal minima and applied it to lustering forhyper-graph partitioning. The lustering metri in the model an also be improved through learning as moreproblems and their solutions are enountered. The experimental results on the tested benhmark iruitsprovided a lear evidene that under this model we learnt signi�ant information from the loal minimaabout the global minimum. Referenes[1℄ C. J. Alpert and A. B. Kahng. Reent developments in netlist partitioning: A survey. Integration: theVLSI Journal, 19(1{2):1{81, 1995.[2℄ W.L. Buntine, L. Su, and A.R. Newton. Adaptive methods for netlist partitioning. In IEEE/ACM Int.Conferene on Computer Aided Design, 1997.[3℄ S. Hauk and G. Borriello. An evaluation of bipartitioning tehniques. IEEE Transations on Computer-Aided Design of Integrated Ciruits and Systems, 16:849{866, 1997.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 30[4℄ G. Karypis, R. Aggrawal, V. Kumar, and S. Shekhar. Multilevel hyper-graph partitioning: Appliationin vlsi domain. In Pro. Design Automation Conferene, pages 526{529, 1997.[5℄ J. Li, J. Lillis, and C.-K. Cheng. Linear deomposition algorithm for VLSI design appliations. In IEEEInternational Conferene on Computer-Aided Design, pages 223{228, 1995.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 31Building a Basi Blok Instrution Sheduler withReinforement Learning and RolloutsAmy MGovern, Eliot Moss, and Andrew G. BartoUniversity of Massahusetts, Amherst,Although high-level ode is generally written as if it were going to be exeuted sequentially, most modernomputers exhibit parallelism in instrution exeution using tehniques suh as the simultaneous issue ofmultiple instrutions. To take the best advantage of multiple pipelines, a ompiler employs an instrutionsheduler to reorder the mahine ode. Building this instrution sheduler is a large-sale optimizationproblem. Beause shedulers are spei� to the arhiteture of eah mahine, and the general problem ofsheduling instrutions is NP-Complete, shedulers are urrently hand-rafted using heuristi algorithms.Building algorithms to selet and ombine heuristis automatially using mahine learning tehniques ansave time and money. As omputer arhitets develop new mahines, new shedulers would be built auto-matially to test design hanges rather than requiring hand-built shedulers for eah hange. This wouldallow arhitets to explore the design spae more thoroughly and to use more aurate metris in evaluatingdesigns.We formulated and tested two methods for automating the design of instrution shedulers: one usesrollouts, the other uses reinforement learning (RL). We also investigated a ombination of these two methods.Rollouts evaluate shedules online during ompilation, whereas RL trains on more general programs and runsmore quikly at ompile time. Both types of shedulers use a greedy algorithm to build shedules sequentiallywith no baktraking (list sheduling).We foused on sheduling basi bloks of instrutions on the 21064 version [2℄ of the Compaq Alphaproessor [6℄. A basi blok is a set of mahine instrutions with a single entry point and a single exit point.It does not ontain any branhes or loops. Our shedulers reorder the mahine instrutions within a basiblok but annot rewrite, add, or remove instrutions. The goal of the sheduler is to �nd an ordering ofthe instrutions in a blok that preserves the semantially neessary ordering onstraints of the original odewhile minimizing the exeution time of the blok.The 21064 is a dual-issue mahine with two exeution pipelines. Compaq has made a 21064 simulatorpublily available that also inludes a heuristi sheduler for basi bloks, whih we refer to as DEC (tomaintain onsisteny with our earlier papers). The simulator gives the running time of a sheduled blokassuming all memory referenes hit the ahe and all resoures are available at the beginning of the blok.We also ran the shedules on a luster of Compaq Alpha 21064 mahines to obtain atual run-time results.We tested eah sheduling algorithm on the 18 SPEC95 benhmark programs (Reilly, 1995). Ten of theseare FORTRAN programs, ontaining mostly oating point alulations, and eight are C programs, fousingmore on integer, string, and pointer alulations. Eah was ompiled using the ommerial Compaq ompilerat the highest level of optimization. We all the shedules output by the ompiler COM. A more detaileddesription of the problem and experimental setup an be found in [4℄. As a performane measure, we usedthe ratio of a weighted exeution time of the sheduler being assessed to a weighted exeution time of DEC,where the weight of eah blok is the number of times that blok is exeuted. This ratio is less than onewhenever a sheduler produed a faster running time than DEC.Rollout ShedulingRollout sheduling works like this: given a set of andidate instrutions to add to a partial shedule, thesheduler appends eah andidate to the partial shedule and then follows a �xed poliy, �, to shedule theremaining instrutions. The running time of eah ompleted shedule is determined. After rolling out eahandidate (repeatedly for stohasti poliies), the sheduler selets the instrution with the best estimatedrunning time. (Rollouts were used in bakgammon by Woolsey, 1991, Galperin, 1994, and Tesauro andGalperin, 1996).).

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 32Bertsekas et al. (1997) proved that if we used the DEC sheduler as �, we would perform no worse thanDEC, but an arhitet proposing a new mahine would not have suh a good heuristi poliy available.Therefore, we onsidered rollouts using (1) the random poliy, denoted RANDOM-�, in whih a rolloutmakes all hoies in a valid but uniformly random fashion (20 rollouts per instrution); (2) the the optimizingompiler COM, denoted COM-�; and (3) the DEC sheduler itself, denoted DEC-�. (For the latter two,only one rollout per instrution was needed sine eah is deterministi). As a baseline sheduler, we alsosheduled eah blok with a valid but uniformly random ordering, denoted RANDOM.The following table summarizes the performane of the rollout sheduler for eah poliy as omparedDEC on all 18 benhmark programs for both the simulator and the atual exeution times. All numbers aregeometri means of the performane measure over 30 runs of eah benhmark. Ratios less than one (italis)mean that the sheduler outperformed DEC.RANDOM RANDOM-� COM COM-� DEC-�Sim Real Sim Real Sim Real Sim Real Sim RealFortran geometri mean: 1.417 1.112 1.093 1.050 1.040 1.003 1.008 1.000 0.987 1.001C geometri mean: 1.123 1.028 1.003 0.996 1.017 0.991 0.995 0.994 0.991 1.008Overall geometri mean: 1.278 1.074 1.052 1.026 1.030 0.998 1.002 0.998 0.989 1.004As expeted, the random sheduler performed very poorly (27:8% slower than DEC for simulation mode).In ontrast, RANDOM-� ame within 5% of the running time of DEC. COM was only 3% slower than DECand outperformed DEC on two appliations; and COM-� outperformed DEC on 6 appliations. The DEC-�sheduler was able to outperform DEC on all appliations, produing shedules that ran about 1:1% fasterthan those produed by DEC. Although this improvement may seem small, the DEC sheduler is known tomake optimal hoies 99:13% of the time for bloks of size 10 or less [7℄. The atual performane of thebinaries built using eah of our shedulers was similar to the performane in the simulator, although withsmaller di�erenes, showing that the assumptions that DEC makes for the simulator an be detrimental onthe atual mahine.Although the performane of the rollout sheduler an be exellent, rollouts are inherently omputation-ally expensive. Rollouts an be used to optimize shedules for important bloks (those with long runningtimes or whih are frequently exeuted) within a program but not for sheduling large programs unless om-putation time improves. With the performane and the timing of the rollout shedulers in mind, we lookedto RL to obtain high performane at faster running times.Reinforement LearningWe used a temporal di�erene (TD) algorithm to estimate the value funtion of the urrent sheduling poliy.At the same time, we used this estimate to update the urrent poliy. This results in a kind of generalizedpoliy iteration (Sutton and Barto, 1998) that tends to improve the poliy over time. Instead of learning thediret value of hoosing instrution A or instrution B, our RL system learned a preferene funtion betweenandidate instrutions: it learned the di�erene of the returns resulting from hoosing instrution A overinstrution B. The preferene funtion was represented as a weighted sum of a set of feature values desribingthe urrent partial shedule and two andidate instrutions. Eah feature was derived from knowledge of theDEC simulator. At eah hoie point during learning, the RL sheduler hooses the most preferred ationaording to the urrent value funtion with a high probability, and otherwise hooses a random but validinstrution. The reward was zero until a blok was sheduled, in whih ase it was a measure of how well theshedule outperformed DEC, normalized by the blok size. A disussion of how well other reward funtionsperformed an be found in [4℄.We trained the RL sheduler for 100 epohs on the appliation ompress95, and we used the best resultingvalue funtion to shedule the other 17 benhmarks. The results are shown below. As before, we also testedthe shedules on Compaq Alphas.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 33Performane using the DEC reward funtionFortran programs C programsApp Sim Real App Sim Real App Sim Real App Sim Realapplu 1.094 1.017 apsi 1.090 1.029 1 1.023 1.007 ompress95 0.991 0.967fpppp 1.086 1.038 hydro2d 1.036 1.002 go 1.034 0.925 ijpeg 1.025 1.031mgrid 1.410 1.132 su2or 1.035 1.012 li 1.016 1.004 m88ksim 1.012 0.983swim 1.569 1.007 tomatv 1.061 1.028 perl 1.022 0.997 vortex 1.035 0.977turb3d 1.145 1.016 wave5 1.089 0.994 C geometri mean: 1.020 0.986Fortran geometri mean: 1.151 1.027 Overall geometri mean: 1.090 1.009By training the RL sheduler on ompress95 for 100 epohs, we were able to outperform DEC on om-press95. The RL sheduler ame within 2% of the performane of DEC on all C appliations and within 15%on unseen Fortran appliations. Although the Fortran performane is not as good as that on the C applia-tions, the RL sheduler has more than halved the di�erene between RANDOM and DEC. This demonstratesgood generalization aross basi bloks. Although there are benhmarks that perform muh more poorlythan the rest (mgrid and swim), those benhmarks perform more than 100% worse than DEC under theRANDOM sheduler. In atual exeution of the learned shedules, the RL sheduler outperformed DECon the C appliations while oming within 2% of DEC on the Fortran appliations. We also experimentedwith training the RL sheduler on the Fortran program applu. By doing so, the simulated performane onFortran appliations improved from 15% slower than DEC to only 8% slower than DEC. At the same time,performane on unseen C programs slowed by slightly less than 1%.Combining Reinforement Learning with RolloutsWe also experimented with a sheduler, RL-�, that used the value funtion learned by RL on ompress95 asthe rollout poliy. The results are shown below.Fortran programs C programsApp Sim Real App Sim Real App Sim Real App Sim Realapplu 1.017 0.999 apsi 1.015 1.012 1 1.000 1.005 ompress95 0.974 1.014fpppp 1.021 0.992 hydro2d 1.006 0.999 go 1.001 0.991 ijpeg 0.986 0.986mgrid 1.143 1.027 su2or 1.006 1.010 li 0.995 1.005 m88ksim 0.998 0.979swim 1.176 1.003 tomatv 1.035 0.999 perl 0.996 0.981 vortex 1.001 0.984turb3d 1.039 0.988 wave5 1.025 0.992 C geometri mean: 0.994 0.993Fortran geometri mean: 1.047 1.002 Overall geometri mean: 1.023 0.998By adding only one rollout, we were able to improve the C results to be faster than DEC overall. TheFortran results improved from 15% slower to only 4:7% slower than DEC. When exeuting the binaries fromthe RL-� shedules, a user would see slightly faster performane than DEC.ConlusionsWe have demonstrated two suessful methods of building instrution shedulers for straight line ode.The �rst method, using rollouts, was able to outperform a ommerial sheduler both in simulation and inatual run-time results. The downside of using a rollout sheduler is its inherently slow running time. Byusing an RL sheduler, we were able to maintain good performane while signi�antly reduing shedulingtime. Finally, we showed that a ombination of RL and rollouts was able to ompete with the ommerialsheduler. In a system where multiple arhitetures are being tested, any of these methods ould provide agood sheduler with minimal setup and training.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 34AknowledgmentsThis work was supported in part by the National Physial Siene Consortium, Lokheed Martin, AdvanedTehnology Labs, AFOSR grant F49620-96-1-0234 to Andrew G. Barto, and NSF grant IRI-9503687 toRoderi A. Grupen and Andrew G. Barto. We also thank Sun Mirosystems, Hewlett-Pakard, and Com-paq/Digital Equipment Corporation for their support.Referenes[1℄ Bertsekas, D. P., Tsitsiklis, J. N. & Wu, C. (1997). Rollout algorithms for ombinatorial optimization.Journal of Heuristis.[2℄ DEC (1992). DEC hip 21064-AA Miroproessor Hardware Referene Manual (�rst edition Ed.). May-nard, MA: Digital Equipment Corporation.[3℄ Galperin, G. (1994). Learning and improving bakgammon strategy. In Proeedings of the CBCL LearningDay. Cambridge, MA.[4℄ MGovern, A., Moss, E. & Barto, A. G. (1999). Building a basi blok instrution sheduler withreinforment learning and rollouts. Mahine Learning. Aepted to appear.[5℄ Reilly, J. (1995). SPEC desribes SPEC95 produts and benhmarks. SPEC Newsletter.[6℄ Sites, R. (1992). Alpha Arhiteture Referene Manual. Maynard, MA: Digital Equipment Corporation.[7℄ Stefanovi�, D. (1997). The harater of the instrution sheduling problem. University of Massahusetts,Amherst.[8℄ Sutton, R. S. & Barto, A. G. (1998). Reinforement Learning. An Introdution. Cambridge, MA: MITPress.[9℄ Tesauro, G. & Galperin, G. R. (1996). On-line poliy improvement using Monte-Carlo searh. In Advanesin Neural Information Proessing: Proeedings of the Ninth Conferene. MIT Press.[10℄ Woolsey, K. (1991). Rollouts. Inside Bakgammon, 1(5), 4{7.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 35\STAGE" Learning for Loal SearhJustin A. Boyan y and Andrew W. Moore zy NASA Ames Researh Center; z Carnegie-Mellon University,Stage is a mahine-learning algorithm for aelerating the performane of loal searh. Colleting datafrom sample searh trajetories, Stage builds an auxiliary evaluation funtion whih is then used to biasfuture searh trajetories toward better optima. The algorithm is desribed only briey here; for fullerdesriptions please see [3, 1℄. Other algorithms related to STAGE that are also desribed in this surveyinlude the ontributions of Moll et al. and Su and Buntine.The auxiliary evaluation funtion that Stage builds is an approximation to this preditive funtion:V �(x) def= expeted best Obj value seen on a trajetory that starts from state x andfollows loal searh method �Here, � represents a loal searh method suh as hilllimbing or simulated annealing, and Obj : X ! < isthe objetive funtion whih we would like to minimize. From a reinforement learning perspetive, � anbe seen as a poliy for exploring a Markov Deision Proess, and V � is the value funtion of that poliy:it predits the eventual expeted outome from every state. Thus, well-studied learning algorithms suh asTD(�) [7, 2℄ may be applied to approximate V � from sampled searh trajetories. Here, we approximateV � using a regression model, where states x are enoded as real-valued feature vetors. (Suh features areplentiful in real-world appliations.) We denote the mapping from states to features by F : X ! <D, andour approximation of V �(x) by ~V �(F (x)).The approximate value funtion ~V �(F (x)) evaluates the promise of state x as a starting point for algo-rithm �. To �nd the most promising starting point, then, we must optimize ~V � over X . Stage does thisby applying hilllimbing with ~V � instead of Obj as the evaluation funtion. As illustrated in Figure 7a,Stage repeatedly interleaves two di�erent stages of loal searh: running the original method � on Obj, andrunning hilllimbing on ~V � to �nd a promising new starting state for �. Thus, Stage an be viewed as alearning multi-restart approah to loal searh.(7a) π

π~
optimize V
Hillclimb to

for V ; retrain the fitteroptimize Obj
πRun to

starting state for

~produces new training data

produces good new
π

(7b)
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0 (7) 8

 7
 6
 5
 4
 3
 2
 1
 0

(7d)
0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
va

ria
nc

e
of

 b
in

 fu
lln

es
s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Obj (7e) Vpi_1 (second iteration)

 8
 9

 10
 11
 12
 13
 14

10152025300

0.05

0.1

-15

-10

-5

0

5

10

15

20

Obj(x)

Var(x)

(7f)
0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
va

ria
nc

e
of

 b
in

 fu
lln

es
s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Obj

HC on Vpi_1
HC on Obj

Figure 7: Stage working on the bin-paking exampleWe illustrate Stage's operation with a small example from the NP-omplete domain of bin-paking [4℄,shown in Figure 7b. Paked optimally, this set of 30 items �lls 9 bins exatly to apaity (Figure 7). Wede�ne a loal-searh operator whih moves a single random item to a random new bin with suÆient spareapaity, and we de�ne two state features F (x) for use by Stage:

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 361. The atual objetive funtion, Obj = # of bins used.2. Var = the variane in fullness of the non-empty bins. (This feature is similar to a ost funtion termintrodued in [5℄.)Two trajetories of stohasti hilllimbing in this 2-D feature spae are plotted in Figure 7d. Both trajetoriesstart at the initial state where eah item is in its own bin (Obj = 30;Var = 0:011), and they end at di�erentloal optima: (Obj = 13;Var = 0:019) and (Obj = 11;Var = 0:022), respetively. Stage, trained byquadrati regression to predit the observed outomes 13 and 11 from those two trajetories, learns theapproximate value funtion shown in Figure 7e. Note how the ontour lines shown on the base of the surfaeplot orrespond to smoothed versions of the training trajetories. Extrapolating, ~V � predits that the thebest starting points for hilllimbing are on ars with higher Var(x).Stage swithes to the auxiliary evaluation funtion ~V � and hilllimbs to try to �nd a good new startingpoint. The resulting trajetory, shown as a dashed line in Figure 7f, goes from (Obj = 11;Var = 0:022) upto (Obj = 12;Var = 0:105). Note that the searh was willing to aept some harm to the true objetivefuntion during this stage. From the new starting state, hilllimbing on Obj does indeed lead to a yet betterloal optimum at (Obj = 10;Var = 0:053). During further iterations, the approximation of ~V � is furtherre�ned, and Stage manages to disover the global optimum at (Obj = 9;Var = 0) on iteration seven.ResultsExtensive experimental results are given in Table 4. We onstrast the performane of Stage with that ofmulti-start stohasti hilllimbing, simulated annealing, and domain-spei� algorithms where appliable,on six domains:Bin-paking. As in the example above, but with a 250-item benhmark instane.Channel routing. Lay out wires so as to minimize the width of a hannel in VLSI.Bayes Net Struture-Finding. Find the graph struture that best aptures the dependenies among theattributes of a data set.Radiotherapy Treatment Planning. Produe a treatment plan that meets target radiation doses for atumor while minimizing damage to sensitive nearby strutures. (Experiments were onduted on asimpli�ed 2-D version of the problem.)Cartogram Design. For geographi visualization purposes, redraw a map of the USA so that the states'areas are proportional to population, while minimally deforming the overall shape.Boolean Satis�ability. Minimize the number of unsatis�ed lauses of a Boolean formula expressed inCNF. Here, Walksat [6℄ rather than hilllimbing was used as the baseline loal searh proedure forStage's learning.On eah instane, all algorithms were held to the same number M of total searh moves onsidered, andrun N times. Full details of these experiments may be found in [1℄. The results, summarized in Table 4,indiate that Stage always learned to outperform the baseline loal searh method on whih it was trained,and usually outperformed simulated annealing as well.TransferIn the above experiments, the omputational ost of training a funtion approximator on V � was minimal|typially, 0{10% of total exeution time. However, Stage's extra overhead would beome signi�ant if many

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 37Problem Algorithm Performane over N runsInstane mean best worstBin-paking Hilllimbing, patiene=250 109.38� 0.10 108 110(u250 13, opt=103) Simulated annealing 108.19� 0.09 107 109M = 105; N = 100 Best-Fit Randomized 106.78� 0.08 106 107Stage, quadrati regression 104.77� 0.09 103 105Channel routing Hilllimbing, patiene=250 22.35� 0.19 20 24(YK4, opt=10) Simulated annealing, Obj(x) = w 14.32� 0.10 13 15M = 5�105; N = 100 Stage, linear regression 12.42� 0.11 11 14Bayes net Hilllimbing, patiene=200 440567� 52 439912 441171(ADULT2) Simulated annealing 440924� 134 439551 444094M = 105; N = 100 Stage, quadrati regression 440432� 57 439773 441052Radiotherapy Hilllimbing, patiene=200 18.822�0.030 18.003 19.294(5E) Simulated annealing 18.817�0.043 18.376 19.395M = 104; N = 200 Stage, quadrati regression 18.721�0.029 18.294 19.155Cartogram Hilllimbing, patiene=200 0.174�0.002 0.152 0.195(US49) Simulated annealing 0.037�0.003 0.031 0.170M = 106; N = 100 Stage, quadrati regression 0.056�0.003 0.038 0.132Satis�ability Walksat + Æw = 0 (hilllimbing) 690.52� 1.96 661 708(par32-1.nf, opt=0) Walksat, noise=0, uto�=106, tries=100 15.22� 0.35 9 19M = 108; N = 100 Stage(Walksat), quadrati regression 5.36� 0.33 1 9Table 4: Comparative results on a variety of minimization domains. For eah problem, all algorithms wereallowed to onsider the same �xed number of movesM . Eah line reports the mean, 95% on�dene intervalof the mean, best, and worst solutions found by N independent runs of one algorithm on one problem.Stage was best on average (boldfaed) in �ve of six domains.more features or more sophistiated funtion approximators were used. For some problems suh ost is worthit in omparison to a non-learning method, beause a better or equally good solution is obtained with overallless omputation. But in those ases where we use more omputation, the Stage method may neverthelessbe preferable if we are then asked to solve further similar problems (e.g., a new hannel routing problemwith di�erent pin assignments). Then we an hope that the omputation we invested in solving the �rstproblem will pay o� in the seond, and future, problems beause we will already have a ~V � estimate. Thise�et is termed transfer.
(a)

105

110

115

120

125

1000 10000 100000

N
um

be
r

of
 b

in
s

(1
03

 is
 o

pt
im

al
)

Number of moves considered

STAGE
X-STAGE (b)

10

15

20

25

30

35

40

45

50

5000 50000 500000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE
X-STAGE

Figure 8: Optimization performane with transfer (X-STAGE) and without transfer (STAGE) on bin-paking(a) and hannel routing (b). Note the logarithmi sale of the x-axis.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 38We investigated the potential for transfer in loal searh with a modi�ed algorithm alled X-Stage.The X-Stage algorithm uses a simple voting mehanism to ombine arbitrarily many previously trained ~V �funtions; full details of the voting mehanism are given in [1℄. Figure 8 shows performane urves illustratingtransfer in the domains of bin-paking and hannel routing. In the bin-paking experiment (a), X-Stageombined 19 previously trained ~V � funtions; it reahes good performane levels more quikly than Stage.However, after only about 10 learning iterations and 10,000 evaluations, the average performane of Stageexeeds that of X-Stage on the new instane. In the hannel-routing experiment (b), X-Stage ombined 8previously trained ~V � funtions. This time, the voting-based restart poliy maintained its superiority overthe instane-spei� learned poliy for the duration of the run.These preliminary experiments indiate that the knowledge STAGE learns during problem-solving anindeed be pro�tably transferred to novel problem instanes. Future work will onsider ways of ombiningpreviously learned knowledge with new knowledge learned during a run, so as to have the best of both worlds:exploiting general knowledge about a family of instanes to reah good solutions quikly, and exploitinginstane-spei� knowledge to reah the best possible solutions.DisussionUnder what onditions will Stage work? Intuitively, Stage maps out the attrating basins of a domain'sloal minima. When there is a oherent struture among these attrating basins, Stage an exploit it.Identifying suh a oherent struture depends ruially on the user-seleted state features, the domain'smove operators, and the regression models onsidered. What this work has shown is that for a wide varietyof large-sale problems, with very simple hoies of features and models, a useful struture an be identi�edand exploited. Referenes[1℄ J. A. Boyan. Learning Evaluation Funtions for Global Optimization. PhD thesis, Carnegie MellonUniversity, 1998.[2℄ J. A. Boyan. Least-squares temporal di�erene learning. In Mahine Learning: Proeedings of theSixteenth International Conferene (ICML), 1999. (Best Paper Award).[3℄ J. A. Boyan and A. W. Moore. Learning evaluation funtions for global optimization and Booleansatis�ability. In Proeedings of the Fifteenth National Conferene on Arti�ial Intelligene (AAAI), 1998.(Outstanding Paper Award).[4℄ E. G. Co�man, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin paking: a survey.In D. Hohbaum, editor, Approximation Algorithms for NP-Hard Problems. PWS Publishing, 1996.[5℄ E. Falkenauer and A. Delhambre. A geneti algorithm for bin paking and line balaning. In Pro.of the IEEE 1992 International Conferene on Robotis and Automation, pages 1186{1192, Nie, Frane,May 1992.[6℄ B. Selman, H. Kautz, and B. Cohen. Loal searh strategies for satis�ability testing. In Cliques, Coloring,and Satis�ability: Seond DIMACS Implementation Challenge. Amerian Mathematial Soiety, 1996.[7℄ R. S. Sutton. Learning to predit by the methods of temporal di�erenes. Mahine Learning, 3, 1988.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 39Enhaning Disrete Optimization with Reinforement Learning:Case Studies Using DARPRobert Moll, Theodore J. Perkins, and Andrew G. BartoUniversity of Massahusetts, Amherst,IntrodutionReinforement learning methods an be used to improve the performane of algorithms for disrete optimiza-tion by learning evaluation funtions that predit the outome of searh. In this study we use reinforementlearning (RL) for developing good solutions to a partiular NP-omplete logistis problem, namely the Dial-A-Ride Problem (DARP), a variant of the better-known traveling salesman's problem. DARP is a usefulproblem for study beause the spae of feasible solutions to a DARP instane has a nonuniform struturewhih is nevertheless oherent, in the sense that relatively simple and easily omputable features behavesimilarly for all instanes of all sizes, and an therefore be ombined to form a reasonably aurate instane-independent optimal value funtion approximation.We summarize our tehnique as follows. Using the TD(�) algorithm in an o�-line learning phase, a valuefuntion is learned for DARP whih estimates performane along loal searh trajetories in the spae offeasible solutions. Beause of the general oherene of the Dial-A-Ride problem, the resulting value funtionis e�etive as a loal searh ost funtion for all DARP instanes of all sizes. We believe our methodology isbroadly appliable to many ombinatorial optimization problems. Our researh on enhanement tehniquesfor loal searh ombines aspets of previous work by Zhang and Dietterih [5℄, Boyan and Moore [1℄, Boyan[2℄, Healy and Moll [3℄, and Healy [4℄.The Dial-A-Ride ProblemDARP has the following formulation. A van is parked at a terminal. The driver reeives alls from N us-tomers who need rides. Eah all identi�es the loation of a ustomer, as well as that ustomer's destination.The van must be routed so that it starts from the terminal, visits eah ustomer pik-up and drop-o� site,and then returns to the terminal. For a tour to be feasible, every pik-up site must preede its paired drop-o�site. The van has unlimited apaity. The objetive of the problem is to minimize tour length.We impose a neighborhood struture on the spae of feasible solutions to a DARP instane. If s is alegal tour, we write A(s) for the neighbors of s. Most prominent in our work is the \2-opt" neighborhoodstruture of [7℄, in whih two tours are neighbors if the �rst an be transformed into the seond by reversing asubsequene of site visits in the �rst tour. This neighborhood struture is highly non-uniform: neighborhoodsize varies between O(N) and O(N2). A \3-opt" neighborhood struture also makes sense for DARP [8℄,and the "3-opt" algorithm of [7℄, suitably modi�ed, is extremely e�etive but very slow.Following [5, 1, 3℄, we note that seondary harateristis of feasible solutions an provide valuable infor-mation for searh algorithms. From the point of view of loal seah, suh harateristis an be importantomponents of a generalized ost funtion for hill-limbing. A value funtion, onstruted using RL, andassoiating, with every state, an estimate of performane along a loal searh trajetory starting from thatstate, is preisely suh a generalized ost funtion. Indeed, by adjusting the parameters of a funtion approx-imation system whose inputs are feature vetors desribing feasible solutions, a omputationally tratableRL algorithm an produe a ompat representation of suh an approximate optimal value funtion V .Elaborating on this sheme, our approah operates in two phases. In the learning phase, a value funtion islearned by applying the TD(�) algorithm to several thousand suitably normalized randomly hosen instanesof the problem. In the performane phase, the resulting value funtion, now held �xed, is used to guide loalsearh for additional problem instanes. This approah is in priniple appliable to any suitably oherent

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 40ombinatorial optimization problem.Enhaned 2-opt for DARPIn the learning phase identifed above, we ondut training episodes until we are satis�ed that the funtionapproximator's weighting sheme has stabilized. For eah episode we selet a problem size N at random(from a predetermined range) and generate a random DARP instane of that size, i.e., we form a symmetriEulidean distane matrix by generating random points in the plane inside the square bounded by the points(0,0), (0,100), (100,100) and (100,0). We set the \terminal site" to point (50,50) and the initial tour to arandomly generated feasible tour. We then ondut a modi�ed �rst-improvement 2-opt loal searh using thenegated urrent value funtion, �Vk, as the ost funtion. The modi�ation is that termination is ontrolledby a nonnegative parameter � as follows: the searh terminates at a tour s if there is no s0 2 A(s) suh thatVk(s0) > Vk(s)+ �. In other words, a step is taken only if it produes an improvement of at least � aordingto the urrent value funtion. The episode returns a �nal tour sf . We next run one unmodi�ed 2-opt loalsearh, this time using the standard DARP ost funtion (tour length), from sf to ompute 2-opt(sf).We then apply a bath version of undisounted TD(�) to the saved searh trajetory using the followingimmediate rewards: �� for eah transition, and �(2-opt(sf))=SteinN as a terminal reward, where SteinNis the estimated optimal tour for size N as alulated theoretially by Stein in [9℄.We an now use the learned value funtion V in the performane phase, whih onsists of applying tonew instanes the modi�ed �rst-improvement 2-opt loal searh with ost funtion �V , followed by a 2-optappliation to the resulting tour. The results desribed here were obtained using a simple linear approximatorwith a bias weight and three features: normalized ost; normalized neighborhood size; and a third featurewe all proximity, whih reets the positioning of the N=4 least expensive pairs of sites in a DARP tour.Comparisons among algorithms were done at �ve representative sizes, N = 20, 30, 40, 50, and 60. For thelearning phase, we onduted approximately 3,000 learning episodes, eah one using a randomly generatedinstane of a size seleted randomly between 20 and 60 inlusive. The result of the learning phase was areasonably stable value funtion V . Table 5 ompares the tour quality found by six di�erent loal searhalgorithms. For the algorithms using learned value funtions, the results are for the performane phase afterlearning using the algorithm listed. Table entries are the perent by whih tour length exeeded SteinN forinstane size N , averaged over 100 instanes of eah representative size. Thus, 2-opt exeeded Stein20 = 645on the 100 instane sample set by an average of 42%. The last row in the table gives the results of usingthe �ve di�erent value funtions VN , for the orresponding N . Results for TD(�) appeared to be best with� = :8. The learning-enhaned algorithms do well against 2-opt when running time is ignored, and indeedTD(.8), � = 0, is about 35% perent better (aording to this measure) by size 60. Note that 3-opt learlyprodues the best tours, and a non-zero � for TD(.8) dereases tour quality, as expeted sine it ausesshorter searh trajetories.Table 5: Comparison of Six Algorithms at Sizes N = 20, 30, 40, 50, 60. Entries are perentage above SteinNaveraged over 100 random instanes of size N .Algorithm N=20 N=30 N=40 N=50 N=602-opt 42 47 53 56 603-opt 8 8 11 10 10TD(1) 28 31 34 39 40TD(.8) � = 0 27 30 35 37 39TD(.8) � = :01=N 29 35 37 41 44TD(.8) � = 0, VN 29 30 32 36 40The algorithm TD(.8) � = :01=N ran between 2 and 3 times longer than traditional 2-opt on problem

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 41instanes in the range N=20-60; TD(.8) � = 0 ran 3 to 7 times slower. When performane is equalizedfor time, both algorithms still outperform traditional 2-opt, and by size N=60 these algorithms are 30-40% better. Thus a methodology that onstruts a learned value funtion involving seondary problemharateristis, and uses the value funtiona as a generalized ost funtion for loal searh, an signi�antlyenhane loal searh performane for ombinatorial optimization problems.Other DARP Case StudiesWe also investigated two other learning-based enhanements to ombinatorial optimization algorithms, againusing DARP as our test problem. We onsidered the rollout method [13, 12, 10℄, and we used it to extenda very e�etive onstrutive DARP algorithm developed by Kubo and Kasugai [14℄. Although our rolloutextension is extremely long-running, it signi�antly outperforms the best algorithm reported in [14℄. Indeedeven a drastially trunated rollout algorithm outperforms the Kubo-Kasugai algorithm at small problemsizes.Finally we onsidered a variation of the STAGE algorithm [1, 2℄ alled the Expeted ImprovementAlgorithm, whih uses the same ontrol struture as STAGE, but whih learns a di�erent hill-limbingfuntion|one that seeks to maximize the expeted improvement over the best-so-far solution, rather thanjust the expeted value of hill-limbing. Our results here are preliminary and inonlusive, but we believethat this approah shows promise as yet another learning-based tehnique for ombinatorial optimization.This researh was supported by a grant from the Air Fore OÆe of Sienti� Researh, Bolling AFB(AFOSR F49620-96-1-0254). Referenes[1℄ J.A. Boyan, and A.W. Moore (1997). Using Predition to Improve Combinatorial Optimization Searh,Proeedings of AI-STATS-97.[2℄ J.A. Boyan (1998). Learning Evaluation Funtions for Global Optimization. Ph.D. Thesis, Carnegie-Mellon University.[3℄ P. Healy and R. Moll (1995). A New Extension to Loal Searh Applied to the Dial-A-Ride Problem.EJOR, 8: 83-104.[4℄ P.Healy (1991). Sari�ing: An Augmentation of Loal Searh. Ph.D. thesis, University of Massahusetts,Amherst.[5℄ W. Zhang, and T.G. Dietterih (1995). A Reinforement Learning Approah to Job-Shop Sheduling,Proeedings of the 14th IJCAI, pp. 1114-1120. Morgan Kaufmann, San Franiso.[6℄ R. Moll, A.G. Barto, T.J. Perkins, R. S. Sutton (1998). Learning Instane-Independent Value Funtionsto Enhane Loal Searh, Proeedings of NIPS-98. Denver.[7℄ S.Lin, and B.W. Kernigham and (1973). An EÆient Heuristi for the Traveling-Salesmen Proglem. OR,21: 498-516. 291-307.[8℄ Psaraftis, H. N. (1983). K-interhange Proedures for Loal Searh in a Preedene-Constrained RoutingProblem.EJOR, 13:391{402.[9℄ Stein, D. M. (1978). An Asymptoti Probabilisti Analysis of a Routing Problem. Math.OperationsRes. J., 3: 89{101.[10℄ Tesauro, G., and Galperin, G. R. (1996). On-line Poliy Improvement using Monte-Carlo Searh. InAdvanes in Neural Information Proessing: Proeedings of the Ninth Conferene. MIT Press.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 42[11℄ Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-Dynami Programming. Athena Sienti�, Belmont,MA.[12℄ Bertsekas, D. P. (1997). Di�erential Training of Rollout Poliies. In Pro. of the 35th Allerton Confereneon Communiation, Control, and Computing. Allerton Park, Ill.[13℄ Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C. (1997). Rollout Algorithms for Combinatorial Optimiza-tion. Journal of Heuristis.[14℄ Kubo, M. and Kasugai, H. (1990). Heuristi Algorithms for the Single Vehile Dial-A-Ride Problem.Journal of Operations Researh, 33:354{364.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 43Stohasti Optimization with Learning for Standard Cell PlaementLixin Su, Wray Buntine, and A. Rihard NewtonUniversity of California at Berkeley,IntrodutionStohasti ombinatorial optimization tehniques, suh as simulated annealing [2℄ and geneti algorithms [3℄,have beome inreasingly important in design automation [4, 5℄ as the size of design problems have grownand the design objetives have beome inreasingly omplex. In addition, as we move towards deep-sub-miron tehnologies, the ost funtion must often evolve over time or handle a variety of tradeo�s betweenarea, power, and timing, for example. Design tehnologists an often takle simpli�ed versions of some ofthese problems, where the objetive an be stated in terms of a small number of well-de�ned variables, usingdeterministi algorithms. Suh algorithms may produe as good or even better results than the stohastiapproahes in a shorter period of time. Unfortunately, these algorithms run into a variety of diÆultiesas the problems sale up and the objetive funtions begin to apture the real onstraints imposed on thedesign, suh as omplex timing, power dissipation, or test requirements. Stohasti algorithms are naturallysuited to these larger and more omplex problems sine they are very general, making random perturbationsto designs and, in a ontrolled way, letting a ost funtion determine whether to keep the resulting hange.However, stohasti algorithms are often slow sine a large number of random design perturbations arerequired to ahieve an aeptable result. They have no built-in intelligene and no ability to adapt theirperformane in a partiular problem domain. The goal of this researh was to determine whether statistiallearning tehniques an improve the run-time performane of stohasti optimization for a partiular solutionquality, and in [1, 14℄ we demonstrated that for the problems we onsidered, the adaptive approah o�ers asigni�ant improvement.In our previous work presented in [1℄, we used a one-time, regression-based approah to train the stohastialgorithm. We presented results for simulated annealing as representative stohasti optimization approah.The standard-ell-based layout plaement problem was seleted to evaluate the utility of suh a learning-based approah, sine it is a very well explored problem using both deterministi [6, 7, 8, 9, 10℄ as well as\manually trained" stohasti approahes [11, 12, 13℄. In our urrent work, we extended our approah toinremental learning and we reported detailed results for a regression-based empirial, inremental approahto learning in [14℄.Stohasti plaement algorithms have evolved signi�antly sine their initial appliation in the EDAarea over �fteen years ago [2℄. Over that period, the qualities of results they an produe have improvedsigni�antly. For example, in the development of TimberWolf system [11, 12, 13℄, whih is a general-purposeplaement and routing pakage based on simulated annealing, many tehniques have been tried to speedup the algorithm. They inlude reduing the omputation time of eah move, early rejetion of bad moves,the use of eÆient and adaptive ooling shedules ombined with windowed sampling, and hierarhial orlustered annealing. In many ways, these variations and improvements an be viewed as \manually learned"approahes, based on the appliation of onsiderable experimental as well as theoretial work taking plaeover a long period of time. Commerial developments and other university-based work have also shownsigni�ant improvements over the early work in this area. In our work, we explore another opportunityfor improving the utility of a stohasti algorithm through automati learning of the relative importane ofvarious riteria in the optimization strategy. We learn from previous annealing runs to distinguish potentiallygood moves from bad ones. The good ones will be seleted with a higher probability to expand the searh.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 44Tehnial Bakground and ApproahesWe assume that the readers are already familiar with the simulated annealing algorithm. In the algorithm,any perturbation of the urrent solution is alled a move. A move an be either aepted or rejeted dependingon the Boltzmann test. In Conventional Simulated Annealing (CSA), proposing of a move is totally random.The primary goal of standard ell plaement problem is to �nd positions on the hip for all the ells in anet-list so that the estimated total wire length is minimized. A net-list is the result of logi synthesis in theASIC design ow. In the ase of standard ell design, it represents a set of standard ells and their logialonnetions (nets). As a onstraint, the ells annot overlap with eah other in the �nal plaement. For thesake of simpliity, we also assume all the ells are of the same size in our experiments.In most plaement algorithms, the ost funtion, whih is the estimate of the �nal total wire length, iseither linear or quadrati. As a ommon pratie with simulated annealing, we de�ne the ost funtion asthe sum of half perimeters of bounding boxes of all the nets. The move set is de�ned as the pair-wise swaps.We de�ned a feature vetor of a swap as a real vetor of seven omponents. Our learning mahine isa linear funtion of the feature vetor. The parameters in the linear funtion were determined by linearregression, either in a bath-mode [1℄ or inrementally [14℄.The learned regression model was then used as an evaluation funtion judging the \goodness" of a swap.More spei�ally, a randomly hosen set, whih was a sub-set of the move set was formed �rst, and thenthe \best" move seleted from the hosen set using the evaluation funtion was given to the Boltzmanntest. The simulated annealing with this modi�ation is alled Trained Simulated Annealing (TSA). If theevaluation funtion is updated from run to run, it is alled Inrementally Trained Simulated Annealing(ITSA); otherwise if the evaluation funtion is trained in a bath-mode, it is alled Bath-Mode SimulatedAnnealing (BTSA). Experimental ResultsWe did our plaement experiments on a set of iruits taken from MCNC91 ombinational benhmark set[15℄, NCSU benhmark set [16℄ and ISCA89 sequential benhmarks [15℄. The net-lists were synthesized usingSIS. For onveniene, the MSU standard-ell library was used for generating the ell layouts.Bath-Mode LearningThe test set was divided into two groups, Group 1 was used for the onstrution of regression models; whileGroup 2 was used for the blind test.As an initial test of the approah and to provide a ontrol for later omparisons, we onstruted individualmodels for eah of the iruits. The learning data were obtained by running CSA 5,000 times for eah ofthe iruits. Eah individual model was applied to the iruit on whih it was developed by running TSA tosee if the individual model is robust for the entire (muh larger than the part eah model was learned from)solution spae.In the seond phase of the experiments, we used simple averaging of the parameters aross the test iruitsto build the overall general model. While there are more e�etive statistial approahes to the ombinationof the individual models, simple averaging an be seen as a simple and sub-optimal approah. The general(averaged) model was then applied to all the iruits in Group 1 by running TSA in order to see if thegeneral model works as well as the iruit's own individual model. Our experiment showed that TSA withboth the individual and the general model works equally well. For the same number of moves proposed tothe Boltzmann test, the annealing quality returned by TSA is at least 15-43% better than that returned byCSA.Next we tested the generality of the general model in a more signi�ant way. The general model was

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 45applied to iruits in Group 2, none of whih were used in the training of the model. For the same numberof tested moves, TSA with the general trained model improved the annealing quality by 7- 41% ompared toCSA. Notie that quite a few iruits in Group 2 are 1-3 times larger than the largest iruit in the Group1 training set.To see the CPU time versus annealing quality trade o�, we hanged the number of swaps proposed pertemperature to ontrol the run time. Despite the overhead introdued in TSA, for the same amount of CPUtime, the annealing quality was improved from 12 to 22% for all the Group 2 iruits using TSA in ontrastto using CSA. For Group 1 iruits, the best perentage improvement of �nal quality ranged from 14% to28%.Over the years, researhers have found that a windowing approah, where the maximum distane betweenells in the andidate move is dereased as temperature dereases, tends to improve the overall run-timeperformane of the annealing at little or no ost in the quality of the �nal result. Our experiment alsodisovered that in the ase of TSA, the average ell distane of the proposed swap automatially dereasedwith the temperature; in ontrast, in the ase of CSA the average ell distane did not show any hange.Hene the general trained model, derived purely from the training runs on the test examples and withoutany a priori hints, determined that a windowing approah would atually lead to an optimal utility resultand even predited the optimal window size. Our approah indeed has automatially learned somethingnontrivial!Inremental LearningFirst, we experimented with learning from run to run for a partiular iruit. Sine inremental learningmust start with an initial model, three di�erent initial evaluation funtions were investigated: non-informative(NI), bath learned (BL), and weighted non-informative (WNI).In the ase of using the NI initial model, ITSA is very e�etive in the sense that it ahieved 10-27%redution (ompared to CSA) in the average �nal ost funtion after a single new data point was used toupdate the initial evaluation funtion. Information added to the evaluation funtion in the later runs didnot improve the annealing quality. But if we put less weight on the initial model, namely in the ase ofusing WNI initial model, the perentage improvement at the end of the 3rd inremental annealing run wasinreased by up to 9.3% ompared to that ahieved in the former ase. Similarly, after the 3rd inrementallearning run, the annealing quality onverged to an almost maximum improvement. With the BL initialmodel, the redution ompared to CSA in average �nal ost funtion at the end of the seond run wasalso signi�ant i.e. 2.69-33.45%, and even more, as the inremental learning went on, the redution almostapproahed the value ahieved by BTSA.Next, we experimented with learning from iruit to iruit. It was shown that the model learned from oneiruit an be safely applied to another iruit, and the improvement in annealing quality at the end of theseond inremental learning run was even 1-5% better than its best ounterpart when a model inrementallylearned from the same iruit was used. It was also observed that initial evaluation funtions learned frommany other iruits outperformed the ones learned from only one other iruit by up to 8%. Hene the morehybridized the model, the better the annealing quality will be for new iruits. However, learning order didmake small di�erene too. Conlusions and Future WorkWe demonstrated that a stohasti algorithm, in this ase simulated annealing an signi�antly improve thequality-of-results on a mainstream EDA appliation through e�etive inremental learning.In the ase of bath-mode learning, the annealing quality improvement was 15-43% for the set of ex-amples used in training and 7-21% when the trained algorithm was applied to new examples. With thesame amount of CPU time, the trained algorithm improved the annealing quality by up to 28% for some

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 46benhmark iruits we tested. In addition, the use of the response model suessfully predited the e�etof the windowed sampling tehnique and derived the informally aepted advantages of windowing from thetest set automatially.In the ase of inremental learning, for a partiular iruit, even at the end of the 2nd learning run, theannealing quality was improved by 10%-27% ompared to onventional simulated annealing in the examplespresented. This result was further inreased by up to 10% by putting less emphasis on the initial valueof the evaluation funtion. In ontrast to bath-mode learning, where a large data set must be obtainedfor the training of a regression model from expensive learning runs, the non-informative initial model didnot ost any e�ort and resulted in almost idential improvement. In the ase of learning from iruit toiruit, our experiments showed that information learned from one iruit ould be applied safely to another,yielding a slightly (up to 5%) better result ompared to the best ase of using a model learned from the sameiruit. Moreover, learning from more iruits yielded even better results. However, the learning order didmake a di�erene in terms of annealing quality. Overall, we believe that this work has demonstrated thata stohasti optimization algorithm, applied to at least some EDA problems, an signi�antly improve itsperformane by learning from its optimization history automatially. We believe the appliation of general-purpose stohasti algorithms, with built-in general-purpose approahes to learning, ould eventually formthe basis of a general and adaptive approah to the solution of a variety of VLSI CAD problems.Referenes[1℄ L. Su, W. Buntine, A. R. Newton, and B. S. Peters. Learning as Applied to Stohasti Optimizationfor Standard Cell Plaement. In Proeedings of the IEEE International Conferene on Computer Design:VLSI in Computers & Proessors, pages 622{627. 1998.[2℄ S. Kirkpatrik, C. D. Gelatt, and Jr., M. P. Vehi. Optimization by simulated annealing. Siene,220:671{880, 1983. 1993.[3℄ David Edward Goldberg. Geneti algorithms in searh. Addison-Wesley, 1989.[4℄ D. F. Wong, H. W. Leong and C. L. Liu. Simulated annealing for VLSI design. Kluwer AademiPublishers, 1988.[5℄ Pinaki Mazumder, Elizabeth M. Rudnik. Geneti algorithms for VLSI design, layout & test automation.Prentie Hall, 1999.[6℄ M. Hannan, P. K. Wol� and B. Agule. Some experimental results on plaement tehnique. In Pro. 12thDesign Automation Conferene, pages 214{244. 1976.[7℄ N. Quinn and M. Breuer. A fore direted omponent plaement proedure for printed iruit boards.IEEE Trans. CAS, CAS-26:377{388, 1979.[8℄ R-S. Tsay, E. S. Kuh, and C.-P. Hsu. PROUD: A fast sea-of-gates plaement algorithm. In ACM/IEEEDesign Automation Conferene, 1988.[9℄ J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreih. GORDIAN: VLSI plaement by quadratiprogramming and sliing optimization. IEEE Trans. CAD, CAD-10:356{365, 1991.[10℄ Hans Eisenmann and Frank M. Johannes. Generi global plaement and oorplanning. In IEEE/ACMInternational Conferene on Computer Aided Design, 1998.[11℄ Carl Sehen and Alberto Sangiovanni-Vinentelli. The TimberWolf plaement and routing pakage.IEEE Journal of Solid-State Ciruits, SC-20(2), 1985.[12℄ Wern-Jieh Sun and Carl Sehen. EÆient and e�etive plaement for very large iruits. IEEE Trans-ations on Computer-Aided Design of Integrated Ciruits and Systems, 14(3), 1995.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 47[13℄ William Swartz, et al. Timing driven plaement for large standard ell iruits. In Proeedings of the32nd Design Automation Conferene, 211{215, 1995.[14℄ Lixin Su, Wray Buntine, and A. Rihard Newton. Stohasti Optimization with Inremental Learningfor Standard Cell Plaement. Submitted to Design Automation Conferene, 2000.[15℄ Benhmark iruits released with SIS-1.2. Department of EECS, University of California at Berkeley.[16℄ http://www.bl.nsu.edu/benhmarks.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 48Colletive Intelligene for Optimization(Summary)David H. Wolpert and Kagan TumerNASA Ames Researh Center,A \COlletive INtelligene" (COIN) is a distributed set of interating reinforement learning (RL) algo-rithms designed so that their olletive behavior optimizes a global utility funtion. One an ast a COINas a multi agent system (MAS) where:i) there is little to no entralized ommuniation or ontrol;ii) eah agent runs a `greedy' Reinforement Learning (RL) algorithm, in an attempt to inrease its ownutility;iii) there is a well-spei�ed global objetive funtion that rates the full system.Rather than use a onventional modeling approah (e.g., model the system dynamis, and hand-tuneagents to ooperate), we aim to solve the COIN design problem impliitly, via the \adaptive" harater of the RL algorithms of eah of the agents. This approah introdues an entirely new, profound design problem:Assuming the RL algorithms are able to ahieve high rewards, what reward funtions for the individualagents will, when pursued by those agents, result in high world utility? In other words, what reward funtions will best ensure that we do not have phenomena like the tragedy of the ommons , Braess's paradox, orthe liquidity trap?An example of a naturally ourring COIN is a apitalist eonomy. One an delare `world utility' to bea time average of the Gross Domesti Produt (GDP) of the ountry in question. The reward funtions forthe human agents an then be the ahievements of their personal goals (usually involving personal wealth tosome degree). To ahieve high world utility in any COIN it is neessary to avoid phenomena like the Tragedyof the Commons (TOC), in whih individual avarie works to lower global utility. One way to avoid suhphenomena is by modifying the agents' utility funtions. In the ontext of apitalist eonomies, this an bedone via punitive legislation. A real world example of an attempt to make just suh a modi�ation was thereation of anti-trust regulations designed to prevent monopolisti praties.In designing a COIN we have more freedom than anti-trust regulators though, in that there is no base-line\organi" loal utility funtion over whih we must superimpose legislation-like inentives. Rather, the entire\psyhology" of the individual agents is at our disposal, when designing a COIN. This obviates the needin designed COINs for honesty-eliitation (`inentive ompatible') mehanisms, like autions, whih form aentral omponent of omputational eonomis.We have explored a mathematial framework for COIN design, and investigated the (suessful) applia-tion of that framework in several domains, e.g., optimizing the paket throughput of a teleommuniationsnetwork [10℄. Here we present a summary of a di�erent investigation of our COIN methodology involving avariant of Arthur's \El Farol" bar problem [1, 2, 4, 7, 8, 3℄, a problem whih �rst arose in eonomis (see[11, 9℄ for details). In the bar problem, at eah time step eah agent independently predits, based on itsprevious experiene, whether a bar will be too rowded to be \enjoyable" at that time step. The agent thenuses this predition to deide whether attending the bar or not will maximize its loal utility. The globalobjetive in this problem is to keep the bar as lose to apaity as possible. In this problem the \greedy"nature of the agents an readily thwart the optimization of the world utility.In the problem we investigated, there are N agents, eah piking one of seven nights to attend a barthe following week, a proess that is then repeated. In eah week, eah agent's pik is determined by itspreditions of the assoiated rewards it would reeive. Eah suh predition in turn is based solely upon therewards reeived by the agent in those preeding weeks in whih it made that pik.The world utility is G(�) = PtRG(� ;t), where RG(� ;t) � P7k=1 �k(xk(�; t)), xk(�; t) is the total at-tendane on night k at week t, �k(y) � �ky exp (�y=); and and the f�kg are real-valued parameters.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 49Intuitively, this G is the sum of the \world rewards" for eah night in eah week. Our hoie of �k(:) meansthat when too few agents attend some night in some week, the bar su�ers from lak of ativity and thereforethe world reward is low. Conversely, when there are too many agents the bar is overrowded and the rewardis again low.Eah agent � has a 7-dimensional vetor representing its estimate of the reward it would reeive forattending eah night of the week. At the end of eah week, the omponent of this vetor orresponding tothe night just attended is proportionally adjusted towards the atual reward just reeived. At the beginningof the sueeding week, to trade o� exploration and exploitation, � piks the night to attend randomly usinga Boltzmann distribution with 7 energies �i(�) given by the omponents of �'s estimated rewards vetor, andwith a temperature deaying in time. This learning algorithm is similar to Claus and Boutilier's independentlearner algorithm [5℄.We onsidered three agent reward funtions, using the same learning parameters (learning rate, Boltz-mann temperature, deay rates, et.) for eah. The �rst reward funtion was � = G 8�, i.e., agent �'sreward funtion equals RG. The other two reward funtions are: RUD;� � �d�(xd� (�; t))=xd� , RWL;�(� ;t) �RG �RG(CL�), where d� is the night piked by �, and CL� is a funtion derived from COIN theory.The RUD reward is a \natural" reward funtion to use; eah night's total reward is uniformly dividedamong the agents attending that night. RG is the \team game" reward funtion that has been investigatedin the MAS ommunity [6℄; every agent gets the world reward as its reward signal. RWL is the rewardfuntion reommended by COIN theory.
0

2

4

6

8

10

12

14

16

0 250 500 750 1000

A
ve

ra
ge

 P
er

fo
rm

an
ce

Weeks

0
2
4
6
8

10
12
14
16

21 84 168 252 336 420

Av
er

ag
e

Pe
rfo

rm
an

ce

Number of Agents

WL
G

UD

Figure 9: Average world reward onvergene and saling properties. In both plots the top urve is RWL,middle is RG, and bottom is RUD .The left-hand �gure in Figure 9 graphs world reward value as a funtion of time, averaged over 50 runs,for all three reward funtions. The naive hoie of RUD atually leads to deterioration of performanewith time. Performane with RG eventually onverges to the global optimum. Systems using RWL alsoonverged to optimal performane, but far faster (30 times as quikly). This slow onvergene of systemsusing RG is a result of the reward signal being \diluted" by the large number of agents in the system. Theright-hand �gure in Figure 9 shows how performane at t = 2000 sales with N . Systems using RUD performpoorly regardless of N . Systems using RG perform well when N is low. As N inreases however, it beomesinreasingly diÆult for the agents to extrat the information they need from RG.In onlusion, the COIN framework summarized in this artile addresses large distributed omputa-tional optimization tasks from a novel perspetive, one that works muh better than the other systems weinvestigated.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 50Referenes[1℄ W. B. Arthur. Complexity in eonomi theory: Indutive reasoning and bounded rationality. TheAmerian Eonomi Review, 84(2):406{411, May 1994.[2℄ G. Caldarelli, M. Marsili, and Y. C. Zhang. A prototype model of stok exhange. Europhys. Letters,40:479{484, 1997.[3℄ A. Cavagna, Garrahan J. P., I. Giardina, and D. Sherrington. A thermal model for adaptive ompetitionin a market. preprint ond-mat/9903415 v.3, July 1999.[4℄ D. Challet and Y. C. Zhang. On the minority game: Analytial and numerial studies. Physia A,256:514, 1998.[5℄ C. Claus and C. Boutilier. The dynamis of reinforement learning ooperative multiagent systems. InProeedings of the Fifteenth National Conferene on Arti�ial Intelligene, pages 746{752, June 1998.[6℄ R. H. Crites and A. G. Barto. Improving elevator performane using reinforement learning. In D. S.Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advanes in Neural Information Proessing Systems- 8, pages 1017{1023. MIT Press, 1996.[7℄ M. A. R. de Cara, O. Pla, and F. Guinea. Competition, eÆieny and olletive behavior in the \ElFarol" bar model. preprint ond-mat/9811162 (to appear in European Physis Journal B), November1998.[8℄ W. A. Sethares and A. M. Bell. An adaptive solution to the El Farol problem. In Proeedings. of theThirty-Sixth Annual Allerton Conferene on Communiation, Control, and Computing, Allerton, IL, 1998.(Invited).[9℄ D. H. Wolpert and K. Tumer. An Introdution to Colletive Intelligene. In J. M. Bradshaw, editor,Handbook of Agent tehnology. AAAI Press/MIT Press, 1999. to appear.[10℄ D. H. Wolpert, K. Tumer, and J. Frank. Using olletive intelligene to route internet traÆ. InAdvanes in Neural Information Proessing Systems - 11. MIT Press, 1999.[11℄ D. H. Wolpert, K. Wheeler, and K. Tumer. General priniples of learning-based multi-agent systems.In Proeedings of the Third International Conferene of Autonomous Agents, pages 77{83, 1999.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 51EÆient Value Funtion Approximation Using Regression TreesXin Wang and Thomas G. DietterihOregon State University,Value funtion approximation is ritial for the appliation of reinforement learning in large state spaes,suh as those that arise in ombinatorial optimization problems. The majority of suessful appliations ofreinforement learning have employed neural network funtion approximators [5, 3℄, but these are slow andoften require substantial parameter tuning and speial training methods to obtain good performane. Forexample, to obtain suessful results in resoure-onstrained sheduling problems, Zhang and Dietterih[7℄ had to arefully adjust learning rates, output representations, experiene replay, and reverse-trajetoryTD(�) training. Table 6: Comparison of Value Funtion Approximation MethodsIrrelevant &Funtion Approximator Bias Speed Saling Disontinuities? Correlated Features?Neural Networks Low Slow Good Ok YesLinear Funtions High Fast Good No NoLoal Linear Low Slow Poor Ok NoCMAC Medium Fast Poor Ok NoRegression Trees Low Fast Good Good YesOur goal is to develop a new family of funtion approximators that have low bias, high speed, goodsaling to high-dimensional input spaes, and the ability to represent disontinuous value funtions and tohandle irrelevant and orrelated input features. Table 6 summarizes the advantages and disadvantages ofvarious existing funtion approximator families aording to these riteria. As the table shows, we havehosen to fous on regression trees, beause they show promise of doing well on all of these riteria.Our regression trees are binary trees. Eah internal node ontains a splitting plane that divides thefeature spae into two half-spaes orresponding the node's left and right hild nodes. Eah leaf node in thetree ontains a linear funtion de�ned over the feature spae. Given feature vetor x, its value is preditedby \dropping" it through the tree, obeying the splitting plane at eah internal node, and evaluating thelinear funtion at the leaf node.There are three key steps in any regression tree algorithm: (a) hoosing the splitting planes at the internalnodes, (b) �tting the planes at the leaf nodes, and () halting tree growth.Choosing Splitting Planes. We try to put splitting planes where there are disontinuities in the valuefuntion. To avoid searhing the in�nite spae of splitting planes, we borrowed an idea from Hinton andRevow's [4℄ deision-tree algorithm in whih splitting planes are de�ned by taking the plane that lies mid-waybetween two training examples. They onsidered all pairs of training examples belonging to di�erent lasses,and evaluated eah of these andidate planes (by one-step lookahead) to hoose the best one.In reinforement learning in deterministi (or nearly deterministi) state spaes, disontinuities in thevalue funtion are found primarily between pairs of states (s1; s2) where s2 an be reahed in one step froms1. Our algorithm proeeds by randomly drawing a sample of 50 suh pairs and onstruting the plane thatis the perpendiular bisetor of eah pair. Eah splitting plane is evaluated by one-step lookahead. Thetraining examples at the urrent node are partitioned aording to the splitting plane, and the two resultingsets of points are �tted with linear surfaes as desribed below. The split that gives the best overall �t ishosen.Fitting Linear Funtions to the Leaf Nodes. In supervised learning, the usual pratie is to �nd

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 52the funtion V̂ that minimizes the squared error between the predited and the atual values. We will allthis the supervised error: E1 =Xs hV (s)� V̂ (s)i2 : (1)This method has been applied in reinforement learning (e.g., [2℄), but even if V̂ is a good approximation toV , the ation reommended by V̂ an still be muh worse than the ation reommended by V . The problemis that unless the learning algorithm an redue the supervised error to zero, V̂ will not be a solution to theBellman equation, and this is a requirement for produing an optimal poliy.To solve the Bellman equation, we an try to minimize the Bellman error:E2 =Xs V̂ (s)�maxa Xs0 P (s0js; a)[R(s0js; a) + V̂ (s0)℄!2 : (2)This is the basis of TD(�) and related algorithms. However, if V̂ annot represent this solution exatly, theation reommended by V̂ may not be optimal.Baird [1℄ suggested minimizing the Advantage Error, whih we an write as follows. Let Q(s; a) be thereturn of performing ation a in state s:Q(s; a) =Xs0 P (s0js; a)[R(s0js; a) + V (s0)℄: (3)Let abest be the ation that has the highest Q value. Then the advantage of performing ation a in state sis de�ned as A(s; a) = Q(s; a)�Q(s; abest): (4)The advantages of all ations exept abest are negative. We an then de�ne the squared advantage error tobe E3 =Xs Xa �hQ̂(s; a)� Q̂(s; abest)i+�2 (5)where the notation [x℄+ is 0 if x is negative, and x if x is positive. Hene, if the predited advantage of a ispositive, then we have an error (sine all advantages should be negative or zero), and we square that error.To train the leaves of the regression tree, we ombine all three error terms to give a weighted ompositeerror E = !1E1 + !2E2 + !3E3: (6)Here, the !i � 0 ontrol the relative importane of the supervised, Bellman, and Advantage error terms.Stopping Rule. If the improvement in the omposite error between a parent node and its hildren isless than 5%, then tree growth is halted.We tested our regression tree algorithm on the ART-1 set of resoure-onstrained sheduling problemsdeveloped by Wei Zhang [8℄. For eah of the 25 training problems, we applied a simple greedy heuristideveloped by Zhang to guide a beam searh (beam width 20) to �nd a single \best" path from the startingstate to a feasible solution. We then grew a regression tree from these \best paths" (and all one-stepdepartures from the best path) using the algorithm outlined above. The values of the !'s were hosen tooptimize performane on 25 validation problems. Finally, the learned regression tree was applied to solve 50test problems and ompared to the solutions found by Wei Zhang's neural network value funtion. Figure 10summarizes the results.The regression tree gives better results for 23 problems, gives the same result for 3, and gives worseresults for 24. A 2-sided t test annot rejet the null hypothesis that the two funtion approximators aregiving the same performane (p = :84).

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 53

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

T
es

t S
et

 R
D

F
(R

eg
re

ss
io

n
T

re
e

V
al

ue
 F

un
ct

io
n)

Test Set RDF (Neural Network Value Function)Figure 10: Regression tree (1 best path and using RDF) vs. Neural net on test set; points below the line areproblems where the regression tree gave a better solution than the neural network.Table 7: Importane of Individual Terms in the Composite Objetive FuntionRegression tree vs. Neural netSupervised Bellman Advantage win tie loseyes yes yes 23 3 24no yes yes 1 0 49yes no yes 14 3 34yes yes no 11 1 38yes no no 4 0 46no yes no 3 0 47no no yes 6 0 44Table 7 shows that eah of the three terms is essential in order for the regression tree to math theperformane of the neural network.The �nal question we address is training time. Aording to our most reent measurements, the trainingtime for the regression trees on the ART-1 problem set is about a fator of 10 faster than for the neuralnetwork. On more diÆult problem sets, we expet the di�erenes to be more dramati.The results of this initial study are promising. However, before we an apply regression trees to largeombinatorial optimization problems, we need to address three major problems. First, our algorithm re-quires supervised values for the states in the training data. For ART-1, we have a good heuristi, but forother problems, a better method is needed for �nding supervised values. Seond, our algorithm is a bathalgorithm. We need some way to interleave exploration with funtion �tting (e.g., by making the methodmore inremental). Finally, our urrent splitting rule assumes that all features are equally relevant (andunorrelated). We need to improve the rule to perform some kind of feature seletion during splitting sothat irrelevant and orrelated features an be deteted and ignored.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 54AknowledgementsThe authors gratefully aknowledge the support of NSF Grant 9626584-IRI and AFOSR Grant F49620-98-1-0375. Referenes[1℄ Baird, L. C. 1993. Advantage updating. WL-TR-93-1146, Wright-Patterson Air Fore Base.[2℄ Boyan, J. A. and Moore, A. W. 1995. Generalization in reinforement learning: Safely approximatingthe value funtion. In Tesauro, G., Touretzky, D. S., Leen, T. K. (Eds), Advanes in Neural InformationProessing Systems, Vol 7, 369{376. The MIT Press, Cambridge.[3℄ Crites, R. H. Barto, A. G. 1996. Improving elevator performane using reinforement learning. InTouretzky et al. [6℄, 1017{1023.[4℄ Hinton, G. E. Revow, M. 1996. Using pairs of data-points to de�ne splits for deision trees. In Touretzkyet al. [6℄, 507{513.[5℄ Tesauro, G. 1992. Pratial issues in temporal di�erene learning. Mahine Learning, 8, 257{277.[6℄ Touretzky, D. S., Mozer, M. C., Hasselmo, M. E. (Eds). 1996. Advanes in Neural Information ProessingSystems, Vol 8. The MIT Press, Cambridge.[7℄ Zhang, W. Dietterih, T. G. 1995. A reinforement learning approah to job-shop sheduling. In 1995International Joint Conferene on Arti�ial Intelligene, 1114{1120. Morgan Kaufmann, San Franiso,CA.[8℄ Zhang, W. 1996. Reinforement Learning for Job-Shop Sheduling. Ph.D. thesis, Oregon State University,Department of Computer Siene.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 55Numerial Methods for Very High-Dimension Vetor SpaesT. Dean, K.E. Kim, and S. HazlehurstBrown University,There is a large lass of numerial optimization problems that an be desribed in terms of equationsinvolving vetors and matries. One example that we use throughout this short overview is the problem of�nding an optimal or near-optimal poliy for a Markov deision problem (MDP). MDPs onstitute a stohas-ti generalization of the deterministi propositional planning problems studied in arti�ial intelligene [3℄.The objetive funtions and solution methods for MDPs are often haraterized in terms of matrix-vetorequations [5℄.Consider alulating v de�ned as v = Au, in whih A is an n � n matrix and u and v are vetors ofdimension n. The matrix A might be the adjaeny matrix for a graph representing a database relation or thestate-transition matrix for a planning problem and u might be the spei�ation of verties orresponding toa query or the initial-state distribution. Often enough, we are interested in solving problems where n = kmfor some m and k � 2. Of ourse, if m is large, we probably an't represent v = Au expliitly by alloatingspae for eah entry of A, u, and v. But what if A, u, and v are \symmetrial" or \regular" in some sense?For example, sparse matrix representations exploit ertain types of symmetries for problems in whih O(n)is aeptable (and hene m is relatively small) but O(n2) is not. In this work, we are interested in a di�erentlass of regularities for problems in whih m is large and O(n) time or spae is out of the question.In many of the optimization problems enountered in arti�ial intelligene, inluding the problem of�nding optimal poliies for MDPs, the matries and vetors an be quite large. In partiular, it is oftenthe ase that the number of indies (and hene the size of a matrix, say, if represented as simple table) isexponential in the size of the problem desription.For example, in the ase of fatored MDPs [1℄, if we were to alloate spae for eah entry, the sizes of thestate-transition matrix and the reward vetor would be exponential in the number of state variables used todesribe the domain. In many ases, however, there are representations for these large matries and vetorsthat allow us to enode these objets in a ompat and tratable form. In the following, we desribe onesuh representation based on trees that works well for MDPs.
1.0

0.0

1.00.1

1.0 0.0 1.0 0.0

Rt

Pr Rt+1 Rt()

U t

Pr U t+1 U t()

W t

Rt

U t

Pr W t+1 Rt,U t,W t()R R

U U

W W

HC

WC WC

HC

t t 1+
1.0 0.9

HCt

Pr HCt+1 HCt()

1.0 0.0

WCt

Pr WCt+1 WCt()

Figure 11: Compat representation for a robot ationFigure 11 depits a ompat representation for the state-transition probability distribution for an ationin a simple robot domain modeled as an MDP [2℄. We de�ne R;U;W;HC;WC as (boolean) index (or state)variables representing, respetively, the weather outside being rainy, the robot having an umbrella, the robotbeing wet, the robot holding o�ee, and the robot's boss wanting o�ee. The network shown on the left inFigure 11 indiates the funtional dependenies involving these variables. The tree strutures on the rightindiate the transition probability distributions for eah index variable given its parents as determined bythe network on the left.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 56
WC

HC W

2 4 7 8

1 0

1 10 0
v =

0
0

0
0

0
,

,
,

,
[

]
0

0
0

0
1

,
,

,
,

[
]

0
0

0
1

0
,

,
,

,
[

]

0
0

1
0

1
,

,
,

,
[

]

1
1

1
1

1
,

,
,

,
[

]

4
0 1 2 i 31

R
U
W

HC
WC

……

……Figure 12: A vetor ompatly represented as a tree
0 0 0 0 0, , , ,[]

0 0 0 1 0, , , ,[]

0
0

0
0

0
,

,
,

,
[

]

1
1

0
0

0
,

,
,

,
[

]

1
1

1
1

1
,

,
,

,
[

]

0
0

0
0

1
,

,
,

,
[

]
0

0
0

1
0

,
,

,
,

[
]

0

2
0 0 0 0 1, , , ,[] 1

1 1 1 0 0, , , ,[] i

1 1 1 1 1, , , ,[] 31

0

1 2 j 31

aij Pr Rt+1 Rt()=

Pr W t+1 Rt,U t,W t()×
Pr U t+1 U t()×

Pr HCt+1 HCt()×

R
U

W

WC
HC

Pr WCt+1 WCt()×

……

… …

…
……

…

Figure 13: Computing an entry in a state-transition matrixLet Z = [R;U;W;HC;WC℄ denote a vetor z 2 f0;1g5. z determines the index into the vetorsand matries of the original problem. Two indies are said to be equivalent with respet to value if theirorresponding entries are the same. This equivalene relation indues a partition on the set of all indies.Ideally, we would only want to alloate an amount of spae polynomial in the number of index variablesfor eah blok in this partition | this amount of spae would have to suÆe for both the value of theentry (ommon to all of the entries) and for the representation of the blok. Fortunately, in some ases,we an represent large bloks of indies quite ompatly, e.g., we might interpret the formula WC ^HC asrepresenting the set of all indies in whih WC is assigned 1 and HC is assigned 0. Note that in Figure 12whih depits the reward vetor (funtion) for the robot problem as a tree, we have ahieved eonomy ofrepresentation by exploiting independene involving the index variables, e.g., if WC is 1, then the entry ofthe vetor is independent of the value of W .We an represent large matries in a similar manner. The probability of ending up in one state havingstarted from another is determined as the produt of the values found in the transition probability trees.Figure 13 shows the formula for a partiular entry in the state-transition probability matrix. Note thatalthough the dimension of the vetors and matries is exponential in the number of index variables, retrievinga partiular entry an be done in time polynomial in the size of the representation.One we an atually write down the equations for the underlying optimization problem in terms ofmatries and vetors, there remains the problem of arrying out the basi operations, e.g., transposingmatries, omputing vetor-vetor and matrix-vetor produts, and raising a matrix to a power, that arerequired to implement various numerial methods. In [4℄, we desribe proedures for arrying out the basioperations on vetors and matries represented in terms of trees; in the following, we provide an example to

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 57
WC

R

3 2

0
b

a

WCWC

-1 1 5 1

W

WCWC

-1 1 5 1WC

R

3 2

0 W

WCWC

5 11R

2 1

W

WCWC

1R

2 1

1R

8 7

W

…

Figure 14: Adding two vetors represented as treesillustrate the basi idea.Generalizing on the work of Boutilier et al. [2℄, we de�ne vetor addition, inner produt, and matrix-vetor multipliation operators in terms of a basi tree grafting operator. In Figure 14, we show how vetoraddition is arried out. Note that the operation is arried out without expliitly enumerating all the entriesin the vetor. Hene, we use the term strutured for linear algebra operators and numerial algorithms builton these operators. By implementing linear algebra operators using these strutured operations, we an, forexample, apply Rihardson's method, various extrapolation methods, onjugate gradient desent, and a hostof other numerial algorithms to problems involving very large matries and vetors.In some ases, the vetors or matries that result from arrying out basi operations an be larger than anyof the matrix or vetor terms involved in the operations. In the worst ase, the most ompat representationfor the result of a omputation involving k terms an be of size exponential in k. To deal with this potentialfor ombinatorial explosion, we apply tehniques from mahine learning and data ompression to ontrol thesize of the intermediate and �nal results of performing operations on matries and vetors. In the ase oftrees, these methods work by pruning the leaves of trees, thereby merging bloks in the partitions that areimpliit in the tree data strutures.By keeping trak of bounds on the values of the entries for indies in eah blok of the partitions, wean report bounds on the error in the �nal results. Standard pruning tehniques suh as those presentedin [6℄ an be applied to elementary strutured operations to produe approximate strutured operations. Inmuh the same way as �nite-preision arithmeti introdues errors in omputer implementations of numerialmethods, approximate operations on matries and vetors introdue errors and thus require areful analysiswith respet to onvergene and preision [7℄. Under reasonable assumptions, we an guarantee that theresulting approximations onverge and the error (the di�erene between result from the algorithm using theapproximate strutured operators and the true answer) is bounded.The ontributions of this work inlude data strutures for representing very large matries and vetors,a set of proedures that operate on these data strutures, and a set of analytial methods that enable us toapply a wide range of numerial methods based on linear algebra diretly to the solution of ombinatorialoptimization problems involving very large matries and vetors.Referenes[1℄ Craig Boutilier, Thomas Dean, and Steve Hanks. Deision theoreti planning: Strutural assumptionsand omputational leverage. Journal of Arti�ial Intelligene Researh, 11:1{94, 1999.[2℄ Craig Boutilier, Rihard Dearden, and Moises Goldszmidt. Exploiting struture in poliy onstrution.In Proeedings IJCAI 14, pages 1104{1111. IJCAII, 1995.

Neural Computing Surveys 3, 1{58, 2000, http://www.isi.berkeley.edu/~jagota/NCS 58[3℄ Rihard Fikes and Nils J. Nilsson. STRIPS: A new approah to the appliation of theorem proving toproblem solving. Arti�ial Intelligene, 2:189{208, 1971.[4℄ Kee-Eung Kim, Thomas Dean, and Samuel E. Hazlehurst. Linear algebra in very high-dimension ve-tor spaes: Algorithms and data strutures for implementing exat and approximate solution methods.Tehnial report, Computer Siene Department, Brown University, 1999. To Appear.[5℄ Martin L. Puterman. Markov Deision Proesses. John Wiley & Sons, New York, 1994.[6℄ J. Ross Quinlan. C4.5 : Programs for Mahine Learning. Morgan Kaufmann, 1992.[7℄ J. H. Wilkinson. Modern error analysis. SIAM Review, 1971.

