
1Statisti
al Ma
hine Learning for Large-S
ale OptimizationContributorsS. Baluja, A.G. Barto, K.D. Boese, J. Boyan, W. Buntine, T. CarsonR. Caruana, D.J. Cook, S. Davies, T. Dean, T.G. Dietteri
h, P.J. Gmytrasiewi
zS. Hazlehurst, R. Impagliazzo, A.K. Jagota, K.E. Kim, A. M
Govern, R. MollA.W. Moore, E. Moss, M. Mullin, A.R. Newton, B.S. Peters, T.J. PerkinsL. San
his, L. Su, C. Tseng, K. Tumer, X. Wang, D.H. WolpertEditors Justin Boyan, Wray Buntine, and Arun JagotaContentsIntrodu
tion J. BoyanA Review of Iterative Global Optimization K. BoeseEstimating the Number of Lo
al Minima in Complex Sear
h Spa
es R. Caruana and M. MullinsExperimentally Determining Regions of Related Solutions forGraph Bise
tion Problems T. Carson and R. ImpagliazzoOptimization of Parallel Sear
h Using Ma
hine Learning and Un-
ertainty Reasoning D. Cook, P. Gmytrasiewi
z, and C. TsengAdaptive Heuristi
 Methods for Maximum Clique A. Jagota and L. San
hisProbabilisti
 Modeling for Combinatorial Optimization S. Baluja and S. DaviesAdaptive Approa
hes to Clustering for Dis
rete Optimization W. Buntine, L. Su, and R. NewtonBuilding a Basi
 Blo
k Instru
tion S
heduler with Reinfor
ementLearning and Rollouts A. M
Govern, E. Moss, and A. Barto\STAGE" Learning for Lo
al Sear
h J. Boyan and A. MooreEnhan
ing Dis
rete Optimization with Reinfor
ement Learning:Case Studies Using DARP R. Moll, T. Perkins, and A. BartoSto
hasti
 Optimization with Learning for Standard CellPla
ement L. Su, W. Buntine, R. Newton, and B. PetersColle
tive Intelligen
e for Optimization D. Wolpert and K. TumerEÆ
ient Value Fun
tion Approximation Using Regression Trees X. Wang and T. Dietteri
hNumeri
al Methods for Very High-Dimension Ve
tor Spa
es T. Dean, K. Kim, and S. HazlehurstIntrodu
tionLarge-s
ale global optimization problems arise in all �elds of s
ien
e, engineering, and business; andexa
t solution algorithms are available all too infrequently. Thus, there has been a great deal of workon general-purpose heuristi
 methods for �nding approximate optima, in
luding su
h iterative te
hniquesas hill
limbing, simulated annealing, and geneti
 algorithms (e.g., [4℄). Despite their la
k of theoreti
al0Neural Computing Surveys 3, 1-58, 2000, http ://www.i
si.berkeley.edu/~ jagota/NCS

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 2guarantees, these te
hniques are popular be
ause they are simple to implement and often perform well inpra
ti
e.Re
ently, there has been a surge of interest in analyzing and improving these heuristi
 algorithms withthe tools of statisti
al ma
hine learning. Statisti
al methods, working from the data generated by heuristi
sear
h trials,
an dis
over relationships between the sear
h spa
e and the obje
tive fun
tion that the
urrentte
hniques ignore, but that may be pro�tably exploited in future trials. Resear
h questions in
lude thefollowing:� Can one learn a pattern about lo
al minima from whi
h one
ould lo
ate superior lo
al minima moreeÆ
iently than by simple repeated trials?� Can multiple heuristi
s be
ombined on the
y, or perhaps by pre-
omputation?� Is the out
ome of a sear
h traje
tory predi
table in advan
e, and if so, how
an su
h predi
tions belearned and exploited?� Can e�e
tive high-level sear
h moves be learned automati
ally?� Does the problem have a natural
lustering or hierar
hy that enables the sear
h spa
e to be s
aleddown?� Can the statisti
al models built in the
ourse of solving one problem instan
e be pro�tably transferredto related, new instan
es?These questions are starting to be answered aÆrmatively by resear
hers from a variety of
ommunities,in
luding reinfor
ement learning, de
ision theory, Bayesian learning,
onne
tionism, geneti
 algorithms, sat-is�ability, response surfa
e methodology, and
omputer-aided design. In this survey, we bring together shortsummaries of 14 re
ent studies that engage these questions.The 14 studies overlap in many ways, but perhaps are best
ategorized a

ording to the goal of theirstatisti
al learning. We
onsider ea
h of the following goals of learning in turn: (1) understanding sear
hspa
es; (2) algorithm sele
tion and tuning; (3) learning generative models of solutions; and (4) learningevaluation fun
tions.Understanding sear
h spa
esStatisti
al analyses of the sear
h spa
es that arise in optimization problems have produ
ed remarkableinsights into the global stru
ture of those problems. The analyses give essential guidan
e to those who woulddesign algorithms to exploit su
h stru
ture. Our survey in
ludes three abstra
ts in this
ategory:� Boese de�nes the \
entral limit
atastrophe" of multi-start optimization, illustrates the \big valley"
ost surfa
e that empiri
ally des
ribes many large-s
ale optimization problems, and outlines a numberof promising resear
h dire
tions.� Caruana and Mullin introdu
e a probabilisti
 method for
ounting the lo
al optima in a large sear
hspa
e, with appli
ation to improving the
uto�
riteria in geneti
 algorithms and simulated annealing.� Carson and Impagliazzo introdu
e the property of \lo
al expansion" of a sear
h graph, show howto test for that property in large-s
ale domains, and use the test to predi
t how easy or diÆ
ult anoptimization instan
e will be for a given heuristi
.Algorithm sele
tion and tuningA natural yet under-investigated approa
h to a

elerating optimization performan
e is to apply ma
hinelearning to tune the optimizer's parameters automati
ally. Su
h parameters may in
lude domain-spe
i�
terms, su
h as the
oeÆ
ients of extra obje
tive-fun
tion terms; generi
 parameters of the heuristi
, su
has the
ooling-rate s
hedule in simulated annealing; and even high-level dis
rete parameters, su
h as whi
h

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 3of a set of heuristi
s to apply. From sample optimization runs, a mapping from parameters to expe
tedperforman
e
an be learned. This mapping
an then itself be \meta-optimized" to generate the best set ofparameters for a family of problems.Two abstra
ts in our survey fall into this
ategory:� Cook, Gmytrasiewi
z, and Tseng apply ma
hine learning to the task of automati
ally sele
ting the bestheuristi
 for use by Eureka, their parallel sear
h ar
hite
ture, on a given problem instan
e. They
ompare de
ision-tree and Bayes-network learning methods.� Jagota and San
his des
ribe several heuristi
s for the NP-hard Maximum-Clique problem. The heuris-ti
s are parameterized by an initial state and/or a weight ve
tor, whi
h adapt from iteration to iterationdepending on their e�e
t on optimization performan
e.Learning generative models of solutionsBoese's \big valley" hypothesis indi
ates that in pra
ti
al problems, high-quality lo
al optima tend to be\
entrally lo
ated" among the lo
al optima in the sear
h spa
e. This suggests an adaptive strategy of
olle
ting the best lo
al optima found during sear
h and training a model of those solutions. If the model isgenerative, it
an be
alled upon to generate new, previously untried solutions similar to the good solutionson whi
h it was trained. This survey in
ludes two relevant abstra
ts:� Baluja and Davies point out that impli
itly, geneti
 algorithms do pre
isely this sort of modeling: the\population" stores good solutions that have already been found, and the mutation and re
ombinationoperators generate new, similar solutions. Their abstra
t summarizes three algorithms that make thegeneti
 algorithm's modeling fun
tion expli
it,
onsequently improving optimization performan
e.� Buntine, Su and Newton learn a generative model in the problem of hyper-graph partitioning,
ru
ialin VLSI design [3℄. The model is in the form of a
lustering of the graph nodes, based on a statisti
alanalysis of the best solutions found so far in the sear
h. The
lustering e�e
tively s
ales down the sizeof the sear
h spa
e, enabling good new
andidate solutions to be generated very qui
kly.Learning evaluation fun
tionsFinally, the fourth and most a
tive
ategory of resear
h
overs learning evaluation fun
tions. An evaluationfun
tion is a mapping from domain solutions to real numbers|the same form as the obje
tive fun
tionitself. And just as the obje
tive fun
tion is used to guide sear
h through the state spa
e, so may any otherevaluation fun
tion be used for that purpose. In fa
t, there are many ways in whi
h a learned evaluationfun
tion might usefully supplement the domain's given obje
tive fun
tion:Evaluation speedup: In
ases where the domain obje
tive fun
tion is expensive to
al
ulate, a fast ap-proximate model of the obje
tive fun
tion
ould lead sear
h to the vi
inity of the optimum with less
omputation (e.g., [5℄).Move sele
tion: An appropriately built evaluation fun
tion
ould be used in pla
e of the original obje
tivefun
tion to guide sear
h. Ideally, su
h a fun
tion would share its global optimum with that of theoriginal obje
tive, but would eliminate the lo
al optima and plateaus that impede sear
h from rea
hingthat goal (e.g., [7℄).Restarting: Iterative algorithms are often run repeatedly, ea
h time starting from an independent random\restart" state. Instead, an evaluation fun
tion may be trained to guide sear
h to new states that arepromising restart states. Su
h a fun
tion
an e�e
tively provide large-step \ki
k moves" that guidethe sear
h out of a lo
al optimum and into a more promising region of spa
e. Generative models mayalso be used this way.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 4Move sampling: In domains with many sear
h moves available at ea
h step, it is time-
onsuming to samplemoves at random, hoping for an improvement. Instead, a \state-a
tion" evaluation fun
tion (one thatestimates the long-term e�e
t of trying a given move in a given state) may be applied to s
reen outunpromising moves very qui
kly.Traje
tory �ltering: An evaluation fun
tion that predi
ts the long-term out
ome of a sear
h traje
torymay be employed as a
riterion for
utting o� an unpromising traje
tory and beginning a new one.Abstra
tion: Some problems naturally divide into two or more hierar
hi
al levels; e.g., in traditional VLSIdesign, pla
e-then-route. Although the true obje
tive fun
tion is only de�ned over fully instantiatedsolutions (at the lowest level), learned evaluation fun
tions
an provide an a

urate heuristi
 to guidesear
h at higher levels.Transfer: Evaluation fun
tions de�ned over a small set of high-level state-spa
e \features" may readily betransferred|i.e., built from a training set of instan
es, and then applied qui
kly to novel instan
es inany of the ways des
ribed above.How
an useful evaluation fun
tions be learned automati
ally, through only trial-and-error simulations ofthe heuristi
? In most
ases, what is desired of the evaluation fun
tion is that it provide an assessment of thelong-range utility of sear
hing from a given state. Tools for exa
tly this problem are being developed in thereinfor
ement learning
ommunity under the rubri
 of \value fun
tion approximation" [2℄. Alternatives tovalue fun
tion approximation in
lude learning from \rollouts" (e.g., [1℄) and treating the evaluation fun
tionweights as parameters to \meta-optimize" (e.g., [6℄), as des
ribed above in the se
tion on algorithm tuning.Our survey in
ludes summaries of �ve studies on learning evaluation fun
tions for optimization:� M
Govern, Moss, and Barto learn an evaluation fun
tion for move sele
tion in the domain of optimizing
ompiled ma
hine
ode,
omparing a reinfor
ement-learning-based s
heduler with one based on rollouts.� Boyan and Moore use reinfor
ement learning to build a se
ondary evaluation fun
tion for smart restart-ing. Their \STAGE" system alternately guides sear
h with the learned evaluation fun
tion and theoriginal obje
tive fun
tion.� Moll, Perkins, and Barto apply an algorithm similar to STAGE to the NP-hard \dial-a-ride" problem(DARP). The learned fun
tion is instan
e-independent, so it applies qui
kly and e�e
tively to newDARP instan
es.� Su, Buntine, Newton, and Peters learn a \state-a
tion" evaluation fun
tion that allows eÆ
ient movesampling. They report impressive results in the domain of VLSI Standard Cell Pla
ement.� Wolpert and Tumer give a prin
ipled method for de
omposing a global obje
tive fun
tion into a
ol-le
tion of lo
alized obje
tive fun
tions, for use by independent
omputational agents. The approa
his demonstrated on the domain of pa
ket routing. (Also see Boese's abstra
t for other results onmulti-agent optimization.)Finally, sin
e the te
hniques of reinfor
ement learning are so relevant to this line of resear
h, we in
ludesummaries of two
ontributions that do not deal dire
tly with large-s
ale optimization, but rather advan
ethe state of the art in large-s
ale reinfor
ement learning:� Wang and Dietteri
h summarize the types of models that have been used for value fun
tion approxi-mation, and introdu
e a promising new model based on regression trees.� Dean, Kim, and Hazlehurst des
ribe an innovative,
ompa
t representation for large-s
ale sparse matrixoperations, with appli
ation to eÆ
ient value fun
tion approximation.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 5It is our hope that these 14 summaries, taken together, provide a
oherent overview of some of the �rst stepsin applying ma
hine learning to large-s
ale optimization. Numerous open yet manageable resear
h problemsremain unexplored, paving the way for rapid progress in this area. Moreover, the improvements that resultfrom the maturation of this resear
h are not merely of a
ademi
 interest, but
an deliver signi�
ant gainsto
omputer-aided design, supply-
hain optimization, genomi
s, drug design, and many other realms ofenormous e
onomi
 and s
ienti�
 importan
e.Referen
es[1℄ D. Bertsekas, J. Tsitsiklis, and C. Wu. Rollout algorithms for
ombinatorial optimization. Te
hni
alReport LIDS-P 2386, MIT Laboratory for Information and De
ision Systems, 1997.[2℄ J. A. Boyan, A. W. Moore, and R. S. Sutton, editors. Pro
eedings of the Workshop on Value Fun
tionApproximation, Ma
hine Learning Conferen
e, July 1995. CMU-CS-95-206. Internet resour
e available athttp://www.
s.
mu.edu/~reinf/ml95/.[3℄ L. W. Hagen and A. B. Kahng. Combining problem redu
tion and adaptive multi-start: A new te
hniquefor superior iterative partitioning. IEEE Transa
tions on CAD, 16(7):709{717, 1997.[4℄ D. S. Johnson and L. A. M
Geo
h. The traveling salesman problem: A
ase study in lo
al optimization.In E. H. L. Aarts and J. K. Lenstra, editors, Lo
al Sear
h in Combinatorial Optimization. Wiley and Sons,1997. Internet resour
e available at http://www.resear
h.att.
om/~dsj/papers/TSP
hapter.ps.[5℄ A. W. Moore and J. S
hneider. Memory-based sto
hasti
 optimization. In D. Touretzky, M. Mozer, andM. Hasselmo, editors, Neural Information Pro
essing Systems 8, 1996.[6℄ E. O
hotta. Synthesis of High-Performan
e Analog Cells in ASTRX/OBLX. PhD thesis, CMU Ele
tri
aland Computer Engineering, 1994.[7℄ W. Zhang and T. G. Dietteri
h. A reinfor
ement learning approa
h to job-shop s
heduling. In Pro
eedingsof the International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI), pages 1114{1120, 1995.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 6A Review of Iterative Global OptimizationKenneth D. BoeseCaden
e Design Systems, San Jose, USA,An instan
e of �nite global optimization
onsists of a �nite solution set S and a real-valued
ost fun
tionf : S ! <. Global optimization seeks a solution s� 2 S whi
h (without loss of generality) minimizes f .Combinatorial optimizations of this type arise in a wide variety of
omputational domains su
h as
om-puter ar
hite
ture, operations resear
h,
omputational
hemistry and biology, and neural network training.Be
ause many of these optimization problems are NP-hard [8℄, and probably impossible to solve optimallyin polynomial time, heuristi
 algorithms are ne
essary for large instan
es. These heuristi
s often use aniterative sear
h that is broadly be des
ribed by the iterative global optimization (IGO) template below.Iterative Global Optimization (IGO)1. for i = 0 to +12. Given the
urrent solution si, generate a new trial solution s03. De
ide whether to set si+1 = si or si+1 = s04. if a stopping
ondition is satis�ed5. return the best solution foundTypi
ally, s0 in Line 2 of the template is generated by a well-de�ned, often randomized, perturbation tosi, i.e., s0 2 N(si) where N(si) indi
ates the set of neighboring solutions or neighborhood, of si. Togetherwith N , the
ost fun
tion f de�nes a
ost surfa
e over the neighborhood topology.Some important variations of the general IGO framework in
lude 1) greedy des
ent IGO; 2) hill-
limbingIGO; 3) multi-start or multi-agent IGO; and 4) IGO with problem-size redu
tion. In greedy des
ent, the
andidate solution s0 is
hosen as si+1 only if it has lower
ost than si. Sophisti
ated implementations ofgreedy des
ent
an qui
kly sear
h a large neighborhood of si for an improving solution. Examples in
ludeBentley's fast implementation of the 3-Opt neighborhood for the traveling salesman problem (TSP) [2℄ andother more
ompli
ated greedy algorithms, su
h as the Lin-Kernighan algorithm [18℄ for the TSP and theKernighan-Lin algorithm [16℄ for graph partitioning.The main weakness of greedy des
ent is that it be
omes stu
k at any lo
ally minimum solution. IGOvariations 2 and 3 are designed to avoid this weakness. Hill-
limbing allows some disimproving or \up-hill" moves, i.e., f(si+1) > f(si). Some popular algorithms in this
lass are simulated annealing [17℄, tabusear
h [9℄, threshold a

eptan
e [6℄, and simulated tempering [19℄. Tabu sear
h and simulated temperingare also adaptive, i.e., they modify their own parameters during the run based on earlier results of the samerun. Another way to avoid getting stu
k at lo
al minima is multi-start IGO, whi
h restarts a new greedydes
ent from a new starting solution s0 whenever a lo
al minima is en
ountered. Multi-start IGO is easilyparallelizable by exe
uting separate runs on di�erent pro
essors or \agents". Some examples of multi-startheuristi
s in
lude [20℄ [5℄ [11℄.The simplest hill-
limbing and multi-start implementations may still have trouble �nding near-optimalsolutions, however. For many NP-Hard problems, as the problem size in
reases, the number of lo
al minimaappears to grow exponentially, and most lo
al minima may be signi�
antly worse than the optimal solution.We have
alled this phenomenon the \
entral limit
atastrophe" [5℄ [3℄, while elsewhere it has been des
ribedas the \
omplexity
atastrophe" [13, 14, 15℄ and the \error
atastrophe" [7℄. The problem is that if thedistribution of the
osts of the lo
al minima is approximately Gaussian, and if the number of lo
al minimain
reases exponentially, then an in
reasing per
entage of the lo
al minima
osts will be
lustered near theaverage lo
al minima
ost and far from the optimal
ost.One way to avoid the
entral limit
atastrophe is to exploit the stru
ture of the
ost surfa
e de�nedby the neighborhood operator N and
ost fun
tion f . For example, Figure [3℄ plots solution
ost versusdistan
e to the optimal solution and versus average distan
e to the other lo
al minima for 2,500 di�erentlo
al minima of the ATT532 TSP test
ase. It appears from these plots that lower-
ost lo
al minima are

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 7
 x 103

29.60

29.80

30.00

30.20

30.40

30.60

30.80

31.00

31.20

31.40

31.60

31.80

32.00

32.20

32.40

32.60

160.00 180.00 200.00 220.00

 x 103

29.60

29.80

30.00

30.20

30.40

30.60

30.80

31.00

31.20

31.40

31.60

31.80

32.00

32.20

32.40

32.60

215.00 220.00 225.00 230.00 235.00 240.00 245.00

Mean distance to other solutions

(a)

Distance to optimal

(b)

C
o
st

C
o
st

2,500 Random 2-Opt lo
al minima for ATT532. Tour
ost (verti
al axis) is plotted against (a) meandistan
e to the other lo
al minima and (b) distan
e to the global minimum.
Figure 1: Intuitive pi
ture of a \big valley"
ost surfa
e.lo
ated
loser to the global minimum and
loser to the \
enter" of the set of lo
al minima. This suggests a\big valley" appearan
e or stru
ture, as illustrated in Figure 1. One way to exploit the big valley is to runmulti-start IGO using starting points s0 generated an \averaging" of previously found lo
al minima [5℄. Ingeneral, the goal is to generate an intera
tion between the di�erent multi-start or multi-agent runs in orderto exploit the stru
ture of the
ost surfa
e.The fourth IGO variation of problem-size redu
tion provides another way to avoid the
entral limit
atastrophe. It uses
lustering to dramati
ally redu
e the size of the solution spa
e. This approa
h,
ombinedwith multi-start, has been parti
ularly su

essful for
ir
uit partitioning in VLSI
omputer
ir
uit design [1℄[10℄ [12℄.

Full Cooperation

Cooperation with Penalties

Communication Only

Independent Agents

Single Agent

Sequential
Multi-StartFigure 2: Hierar
hy of dominan
e between di�erent models of adaptive annealing. Ea
h arrow pointsfrom a dominating to a dominated model.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 8

.001

.01

.1

1.0

10.0

100.0

40 60 80206

Number of Steps

E
x
p

e
ct

e
d

 B
S

F
 C

o
st

(%

 >
 o

p
t.

)
2 Coop. Agents

Single Agent

2 Indep. Agents

Figure 3: Expe
ted best-so-far qualities of optimal poli
ies on instan
e 3SAT6.Finally, we suggest that modeling IGO on small optimization instan
e
an give insights for improving IGOstrategies. For example, in [4℄ and [3℄ we
omputed optimal temperature s
hedules for simulated annealingon small instan
es of TSP, graph partitioning,
ir
uit pla
ement, and 3-SAT. The s
hedules we found indi
atethat temperature s
hedules should not be monotone de
reasing, in
ontrast to the
onventional wisdom forsimulated annealing. These results
an be used to motivate the non-de
reasing s
hedules used in simulatedtempering [19℄. In Chapter 9 of [3℄, we also studied optimal simulated annealing using adaptive s
hedulesand multiple agents. We found that intera
tion among agents
an be potentially very powerful, dependingon the level of intera
tion. Using our models, we
an also
ompared di�erent kinds of intera
tion, in
luding\
ommuni
ation" (sharing attained
osts) and \
ooperation" (sharing
osts and swapping solutions). Figure2 shows a partial hierar
hy between di�erent multi-agent models in our study. (The quality of a model equalsthe expe
ted
ost of the best solution for a given number of IGO steps divided among the di�erent agents.In general, one regime will dominate another if it
an simulate the other one without using any extra IGOsteps.) For a small 3-SAT instan
e, Figure 3 shows the expe
ted solution
ost of di�erent regimes usingoptimal adaptive annealing s
hedules. From the �gure, we note that
ooperating agents appear to have alarge potential for produ
ing nearly optimal solutions,
ompared to multiple agents working independently.In
on
lusion, we have reviewed some dire
tions for analyzing and extending the iterative global opti-mization strategy. We believe there are a number of fruitful areas for further resear
h, in
luding the furtherunderstanding of
ost surfa
es stru
tures and the exploitation of intera
tion between multiple pro
essors or\agents". Referen
es[1℄ C. J. Alpert, J.-H. Huang and A. B. Kahng, \Multilevel Cir
uit Partitioning", in Pro
eedings of the 34thDesign Automation Conf., 530-33 (1997).[2℄ Bentley, J.L., \Fast Algorithms for Geometri
 Traveling Salesman Problems", ORSA Journal on Com-puting 4 (4), 387-411 (Fall 1992).[3℄ K. D. Boese, Models for Iterative Global Optimization, Ph.D. Thesis, UCLA Computer S
ien
e Dept.,1996.[4℄ K. D. Boese and A. B. Kahng, \Best-So-Far vs. Where-You-Are: Impli
ations for Optimal Finite-TimeAnnealing", Systems and Control Letters 22 (1), 71-78 (1994).

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 9[5℄ K. D. Boese, A. B. Kahng and S. Muddu, \On the Big Valley and Adaptive Multi-Start for Dis
reteGlobal Optimizations", Operations Resear
h Letters, 16 (2), 101-113 (1994).[6℄ G. Due
k and T. S
heuer, \Threshold A

epting: A General Purpose Optimization Algorithm AppearingSuperior to Simulated Annealing", J. of Computational Physi
s, 90, 161-75 (1990).[7℄ M. Eigen and P. S
huster, The Hyper
y
le, Springer-Verlag, 1979.[8℄ M. R. Garey and D. S. Johnson, Computers and Intra
tability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.[9℄ F. Glover, \Tabu Sear
h | Part II", ORSA Journal on Computing, 2 (1), 4-32 (1990).[10℄ L. W. Hagen and A. B. Kahng, \Combining Problem Redu
tion and Adaptive Multi-Start: A New Te
h-nique for Superior Iterative Partitioning", IEEE Transa
tions on Computer-Aided Design of IntegratedCir
uits and Systems, 16 (7), 709-17 (1997).[11℄ D. S. Johnson and L. A. M
Geo
h, \The Traveling Salesman Problem: A Case Study in Lo
al Opti-mization", in E. H. L. Aarts and J. K. Lenstra, eds., Lo
al Sear
h in Combinatorial Optimization, Wileyand Sons, 1997.[12℄ G. Karypis and V. Kumar, \A Fast and High Quality Multilevel S
heme for Partitioning IrregularGraphs", SIAM Journal on S
ienti�
 Computing, 20 (1), 359-92 (1998).[13℄ S. Kau�man and S. Levin. \Toward a General Theory of Adaptive Walks on Rugged Lands
apes",Journal of Theoreti
al Biology 128, 11-45 (1987).[14℄ S. Kau�man, Adaptation on Rugged Fitness Lands
apes, in D. L. Stein, ed., Le
tures in the S
ien
esof Complexity, Addison-Wesley, 1989.[15℄ S. A. Kau�man, The Origins of Order : Self-Organization and Sele
tion in Evolution, Oxford UniversityPress, 1993.[16℄ B. W. Kernighan and S. Lin, \An EÆ
ient Heuristi
 Pro
edure for Partitioning Graphs", The BellSystem Te
hni
al Journal, 49, 291-307 (1970).[17℄ S. Kirkpatri
k, C. D. Gelatt, and M. Ve

hi, \Optimization by Simulated Annealing", S
ien
e, 220,671-680 (1983).[18℄ S. Lin and B. W. Kernighan, \An E�e
tive Heuristi
s Algorithm for the Traveling-Salesman Problem",Operations Resear
h, 31, 498-516 (1973).[19℄ E. Marinari and G. Parisi, \Simulated Tempering: a New Monte Carlo S
heme" Europhysi
s Letters,19 (6), 451-5 (1992).[20℄ O. Martin, S. W. Otto and E. W. Felton, \Large-Step Markov Chains for the TSP In
orporating Lo
alSear
h Heuristi
s", Operations Res. Letters, 11 (4), 219-24 (1992).

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 10Estimating the Number of Lo
al Minima in Complex Sear
h Spa
esRi
h Caruana y,z and Matthew Mullinzy UCLA; z JustResear
h,Most optimization resear
h is devoted to new or improved algorithms. Little e�ort is spent
hara
terizingsear
h spa
es so that appropriate algorithms
an be sele
ted. We present an eÆ
ient method for estimatingthe number of lo
al minima in big sear
h spa
es. The method is based on the statisti
s of the birthdayproblem: "How many people must be in a room before the probability is 1/2 that two people share the samebirthday?" Assuming that the probability of birthdays is uniform on a 365 day year, one
an estimate thatthe probability of a birthday being dupli
ated is 0.5 when there are 23 people in the room.We reverse the birthday problem to address the question \How long is the year if a birthday is dupli
atedwhen we put k people in the room?" Generalizing the usual approximation for the birthday problem andsolving for N, the number of days in the year, as a fun
tion of k, the number of people in the room, and PD ,the probability of dupli
ation, yields: N � k2�2ln(1� PD)By
ounting the number of lo
al minima explored by sear
h before some lo
al minimum is visited twi
e,we
an estimate the total number of lo
al minima in the sear
h spa
e. One pro
edure for doing this is torandomly sample lo
al minima, re
ording ea
h one, until one of the minima is visited a se
ond time. Thisyields an estimate of the number of minima needed for the probability to be about 0.5 that a minimumis dupli
ated. Unfortunately, it is diÆ
ult to eÆ
iently sample lo
al minima uniformly. In the absen
eof an eÆ
ient means of uniformly sampling lo
al minima we
an either use an ineÆ
ient uniform samplingpro
edure, or an eÆ
ient non-uniform sampling pro
edure. Here we sa
ri�
e a

ura
y for a gain in eÆ
ien
y.If sampling is not uniform, fewer samples will be needed for dupli
ation to o

ur, so the expe
ted total numberof lo
al minima will be underestimated. This is a

eptable be
ause lower bounds on the number of lo
alminima are more useful than upper bounds. Iterated hill
limbing using steepest, nearest, or sto
hasti
des
ent starting from randomly sele
ted initial points is one way to eÆ
iently sample lo
al minima in manysear
h spa
es.We used this method to estimate the number of lo
al minima in the sear
h spa
es of multiplierless FIRdigital �lters. Optimal tap values for full-pre
ision FIR �lters
an be
omputed analyti
ally [1℄, but full-pre
ision �lters are slow and
onsume a lot of
hip area. Restri
ting tap values to powers of 2 allows fast,
ompa
t shift registers to be used instead of multipliers [2℄. There are no analyti
 te
hniques for sele
tingoptimal tap values for these �lters, so we use numeri
al optimization. Low-pass multiplierless �lters with31, 41 and 51 taps yield sear
h spa
es with 16, 21 and 26 dimensions, respe
tively, be
ause tap values aresymmetri
 about the
entral tap. Taps
an take 15 values (zero, and positive and negative re
ipro
al powersof two). The sear
h spa
es are large,
ontain a large number of poorly performing lo
al minima, and theproportion of good �lters grows in
reasingly small as the number of taps gets large [3℄.We performed 10,000 hill
limbs with iterated steepest des
ent for �lters with 31, 41, and 51 taps. Onaverage, 27 steps were required for ea
h des
ent to be
ome trapped in a lo
al minimum. A dupli
ated lo
alminimum was found in only the smallest sear
h spa
e (31 taps). Thus the estimates for the 41 and 51 tapsear
h spa
es are lower bounds on the estimated lower bounds. The results indi
ate that there are more than4:22� 107 lo
al minima in the 31-tap sear
h spa
e. Thus the minima
omprise at least 6:4� 10�8 per
ent ofthe 31-tap sear
h spa
e. A simple upper bound analysis shows that there are fewer than 1014 lo
al minimain the 31-tap sear
h spa
e, or less than 1:5� 10�3 of the points in the spa
e are lo
al minima.The birthday pro
edure is eÆ
ient for two reasons: 1) it needs sample sizes of roughly the square root ofthe total number of lo
al minima to estimate the total number; 2) it uses optimization to �nd lo
al minima.The savings
an be dramati
. In the 31-tap spa
e, ea
h hill
limb required about 27 steps to �nd a lo
al

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 11Table 1: Estimated Number of Lo
al Minima in the Sear
h Spa
es# Taps # of States # of Lo
alMinima until 1stDupli
ate Estimated # ofLo
al Minima inSpa
e31 6:6� 1018 7,651 4:22� 10741 5:0� 1024 >10,000 > 7:21� 10751 3:8� 1030 >10,000 > 7:21� 107minimum, and ea
h step required 32 fun
tion evaluations to determine the dire
tion of steepest des
ent.Thus the 7651 hill
limbs required 6:4� 106 fun
tion evaluations to �nd the �rst dupli
ate. A nave approa
hto estimating the number of lo
al minima is to randomly sample points in the spa
e and determine whatfra
tion of these are minima. If minima
omprise 6:4� 10�8 per
ent of the spa
e, we would have to sample7:8� 1010 points to have a 50%
han
e of �nding a single minimum, and at ea
h of these points 33 fun
tionevaluations would be required to determine if the point is a lo
al minimum. Thus 2:6 � 1012 evaluationswould be required to estimate the number of lo
al minima using random point sampling. This is 105 timesmore fun
tion evaluations than required using birthday statisti
s. Moreover, if we stop sampling points afterusing the 104 samples used with the birthday method, we almost
ertainly will not have found even one lo
alminimum, so all we'll know is that there probably are fewer than 6:6� 1014 lo
al minima in the spa
e. Thatupper bound isn't very informative. One key advantage of the birthday pro
edure is that the informationneeded to estimate the number of lo
al minima is available whenever optimization is run multiple times. Itis not ne
essary to run a di�erent, and possibly
ostly pro
edure to make an estimate.It
an be estimated that seeing most points in a spa
e
ontaining N points requires about N lnN randomsamples. Thus it would take at least 7 � 107 samples of lo
al minima in the 31-tap spa
e to have a highprobability of seeing the global minimum. This is 7�103 times more hill
limbs than were needed to make thisestimate. 104 hill
limbs took 1 CPU day, so it would take at least 20 years of iterated hill
limbing to reliably�nd the optimal �lter. A more eÆ
ient sear
h pro
edure (or a faster
omputer) probably is required. Witha small amount of sear
h, we
an estimate how mu
h more sear
h is required for that sear
h method to �ndthe global optimum (and that estimate
an be made without knowing the true global optimum). Estimatingthe number of lo
al minima gives us a
riterion for halting sear
h long before the �rst dupli
ate minimum isfound: If it is important to �nd the global optimum, we
an stop running a sear
h pro
edureas soon as we
olle
t enough unique lo
al minima so that the estimated lower bound on thetotal number of lo
al minima is larger than we
an a�ord to sear
h with that pro
edure.Another use of estimates made with the birthday method is to sele
t what optimization pro
edure touse: Suppose we run simulated annealing (SA) 15 times using a slow
ooling s
hedule and estimate thatSA-SLOW e�e
tively sear
hes a spa
e
ontaining at least 75 lo
al minima. Suppose we run SA again, doing150 trials with a fast
ooling s
hedule that is more likely to get stu
k in inferior lo
al minima, and estimatethat SA-FAST e�e
tively sear
hes a spa
e
ontaining about 5,000 lo
al minima. Assuming these are tightlower bounds, if SA-FAST is more than 5000 log500075 log 75 � 131:5times faster than SA-SLOW, and we want to �nd the global optimum, it probably will be better to runmore SA-FASTs despite the fa
t that ea
h run of SA-FAST is more likely to �nd inferior lo
al minima thanSA-SLOW. This de
ision making
an be automated and embedded in a tool that interleaves exe
ution ofdi�erent optimization methods, and uses the a

umulating statisti
s to de
ide whi
h optimization methodto allo
ate future trials to.The main diÆ
ulty when using the birthday method to estimate the number of lo
al minima in a sear
hspa
e is the problem of non-uniform sampling. If some minima have larger basins of attra
tion than other

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 12minima, sear
h pro
edures like iterated hill
limbing will fall into the larger basins more often, skewing thestatisti
s so that dupli
ates o

ur more frequently, and degrading the tightness of the lower bound. (Ifsampling were uniform the method would yield an unbiased estimate instead of an estimate of a lowerbound.) There are a number of ways to deal with the problem of non-uniform sampling of lo
al min-ima, depending on how extreme the di�eren
es in basin sizes are and how tight the bound must be. (Seehttp:/www.
s.
mu.edu/
aruana/pubs/ij
ai99 for details.)Referen
es[1℄ L.R. Rabiner and B. Gould. Theory and Appli
ation of Digital Signal Pro
essing . Prenti
e Hall, Engle-wood Cli�s, NJ, 1975.[2℄ D. Koo and A. Miron. Design of Multiplierless FIR Digital Filters with two to the Nth Power CoeÆ
ients.Philips Labs Report #TR-86-036, September 20, 1986.[3℄ R.A. Caruana and B.J. Co�ey. Sear
hing for Optimal FIR Multiplierless Digital Filters with SimulatedAnnealing. Philips Labs Report #TR-88-031, Mar
h 21, 1988.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 13Experimentally Determining Regions of Related Solutions for Graph Bise
tionProblemsTed Carson and Russell ImpagliazzoUniversity of California, San Diego,Lo
al sear
h heuristi
 algorithms (e.g. Metropolis, simulated annealing [5, 7℄, WalkSAT [1℄, Go-With-the-Winners [2, 3, 4℄, et
.) present intuitively appealing me
hanisms to mix greedy behavior with diversity, andhave a
hieved remarkable su

ess on some problem domains. However, it is often the
ase that there is littleunderstanding, either theoreti
al or empiri
al, of why a heuristi
 su

eeds or fails for various problem do-mains, or of how to optimize a method for a parti
ular domain. Implementations of these algorithms for hard
ombinatorial optimization problems is therefore often by trail-and-error, and performan
e predi
tability and
on�den
e are low.We propose a general method for the experimental study of su
h heuristi
s. This method is intended torelate performan
e of a heuristi
 dire
tly to the
ombinatorial features of the sear
h graph upon whi
h itoperates. To do this we gather statisti
s with respe
t to the
lustering and
onne
tedness of solutions withroughly the same
ost. Sin
e for small
osts these solutions are rare this
annot be done simply by randomsampling. However, if the sub-graphs of low
ost solutions have the a property
alled \lo
al expansion"(intuitively meaning that there are a few highly
onne
ted
omponents
overing the sub-graph), they
anbe uniformly sampled by using a Go-With-the-Winners (GWW) algorithm [2, 3, 4℄. On
e we gather su
hstatisti
s, they are used to give a quantitative analysis of the sear
h spa
e, de�ning key
hara
teristi
s thata�e
t lo
al sear
h heuristi
 performan
e. This analysis is �nally used to build a
ausal model of performan
efor various heuristi
s.The method we propose
an be divided into three phases: validation, mapping, and predi
tion.Validation: Before we
an use the data from the GWW algorithm, we must establish
on�den
e thatthe algorithm is sampling uniformly. This will be true if the sear
h graph has the lo
al expansion property,however we
annot dire
tly test for or prove that this is the
ase (else we
ould prove e�e
tiveness of theGWW algorithm dire
tly!). We instead o�er falsi�able tests that this is the
ase. These tests are intended toverify that the lowest
ost solutions are being found, that known stru
tures in the sear
h spa
e are re
e
ted inthe samples, that the samples and
onsistent a
ross runs, and that the algorithm is behaving asymptoti
allywith regard to its parameters.Mapping: On
e it is established that the GWW algorithm is generating uniform samples, these samples
an be used to build a map of the stru
ture of the sear
h graph. We are interested in features of thesear
h graph that a�e
t lo
al sear
h heuristi
s. The number of
onne
ted
omponents of the sub-graph ofsome quality. and the
onne
tedness (expansion) of these
omponents are two su
h features of parti
ularimportan
e.Predi
tion: Using this map we
an model what would happen if we applied a parti
ular lo
al sear
hheuristi
 to the problem. The entire run of the heuristi
 is modeled, and not just the �nal solution value. Inthis way the e�e
ts of various algorithm te
hniques and parameters
an be examined and optimized.Our method has the following advantages: 1) Causal models of heuristi
 performan
e are produ
edallowing us to predi
t the performan
e of an algorithm, and explain why it behaves as it does. In additionthis provides for prin
ipled ways to sele
t parameters of various algorithms, often a diÆ
ult problem whenapplying general purpose heuristi
s. 2) The models are falsi�able in the sense of the natural s
ien
es: i.e.although proofs of performan
e are not obtained by the experiments,
onsequen
es and predi
tions
an berigorously tested. 3) Our method gives insight into whi
h problems are sus
eptible to a broad
lass ofheuristi
s and whi
h are not.As an example of this method we
onsidered the minimum bise
tion problem. We examined problemsinstan
es drawn from a random graph model, Gn;p;q , whi
h are generated by dividing a graph into a preferredbise
tion and adding edges with high probability p between verti
es on the same side of the partition and

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 14

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550 600

im
ba

la
nc

e

bisection threshold

local optima
greedy optimization traces
GWW population average

10

20

30

40

50

60

70

80

90

100

150 200 250 300 350 400 450 500 550 600 650

im
ba

la
nc

e

bisection threshold

modified greedy algorithm
random/greedy mixed algorithm

average imbalance

with lower probability q between verti
es on opposite sides. Intuitively this \planted bise
tion" in
uen
esthe sear
h spa
e by pla
ing a bias that solutions
loser to the planted bise
tion are of expe
ted lower value.We sele
ted a small separation between p and q where the problems are most diÆ
ult.On
e we validated the uniformity of the GWW algorithm (10000 parti
les and 4096 random walk steps fora 400 node and 1195 edge graph), we pro
eeded to map the sear
h graph for this problem. As expe
ted, thesear
h spa
e was smoothly biased with lower
uts o

urring
loser to the planted bise
tion. Cuts that were atan average distan
e from the planted bise
tion for their value were never lo
al minima. However, those thatwere farther than average from the planted bise
tion were often lo
al minima. Further, greedy algorithmstended to move toward these bise
tions with low
uts but high distan
es from the planted bise
tion (left)and
onsequently fail. These observations led to the
reation of several simple algorithms designed to avoidthis overly optimized region by mixing random walks with greedy moves. We show the tra
es of two su
halgorithms (right). Algorithm A introdu
es a random walk when the greedy method �nds a plateau in thesear
h spa
e, while algorithm B mixes greedy and random moves more smoothly.We see that the algorithms behaved as predi
ted by the map of the sear
h spa
e, avoiding the diÆ
ultregion of overly optimized bise
tions. The map generated by our method proved a

urate and useful foralgorithm
reation and optimization. Referen
es[1℄ B. Selman, H. Kautz, and B. Cohen. Lo
al sear
h strategies for satis�ability testing. In Cliques, Coloring,and Satis�ability: Se
ond DIMACS Implementation Challenge. Ameri
an Mathemati
al So
iety, 1996.[2℄ D. Aldous and U. Vazirani. \Go with the winners" Algorithms. In Pro
. 35th IEEE Symposium onFoundations of Computer S
ien
e (FOCS), pages 492{501, 1994.[3℄ Dimitriou, A., and Impagliazzo, R., Towards a Rigorous Analysis of Lo
al Optimization Algorithms",28th ACM Symposium on the Theory of Computing 1996.[4℄ Dimitriou, A., and Impagliazzo, R., Go-with-the-winners Algorithms for Graph Bise
tion, SODA 98, pp.510-520.[5℄ M. R. Jerrum and G. Sorkin. Simulated annealing for graph bise
tion. In Pro
. 34th IEEE Symposiumon Foundations of Computer S
ien
e (FOCS), pages 94{103, 1993.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 15[6℄ M. R. Jerrum and A. Sin
lair. Condu
tan
e and the rapid mixing property of Markov
hains: The ap-proximation of the permanent resolved. In Pro
. 20th ACM Symposium on Theory of Computing (STOC),pages 235{244, 1988.[7℄ D. S. Johnson, C. R. Aragon, L. A. M
Geo
h and C. S
hevon. Optimization by Simulated Annealing:An Experimental Evaluation, Part I (Graph Partitioning). Operations Resear
h 37 (1989), pages 865{892.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 16Optimization of Parallel Sear
h Using Ma
hine Learning and Un
ertaintyReasoningDiane J. Cook, Piotr J. Gmytrasiewi
z, and Chiu-Che TsengUniversity of Texas at Arlington,Be
ause of the dependen
e AI te
hniques demonstrate upon heuristi
 sear
h algorithms, resear
hers
ontinually seek more eÆ
ient sear
h methods. Advan
es in parallel and distributed
omputing o�er potentialperforman
e improvement, and in response a number of approa
hes to parallel sear
h have been developed.While these approa
hes have many
ontributions to o�er, determining the best use of ea
h
ontribution isdiÆ
ult be
ause of the diverse sear
h algorithms, ma
hines, and appli
ations reported in the literature.In response to this problem, we have developed the Eureka parallel sear
h engine that
ombines manyof these approa
hes to parallel heuristi
 sear
h. Eureka is a parallel IDA* sear
h ar
hite
ture that mergesmultiple approa
hes to task distribution, load balan
ing, and tree ordering, and
an be run on a MIMDparallel pro
essor, a distributed network of workstations, or a single ma
hine with multithreading. Our goalis to
reate a system that automati
ally sele
ts an optimal parallel sear
h strategy for a given problem spa
eand hardware ar
hite
ture.A parallel sear
h algorithm requires a balan
ed division of work among pro
essors. One method ofdividing IDA* is to give a
opy of the entire sear
h tree to ea
h pro
essor with a unique
ost threshold [11℄.Using this approa
h, pro
essors sear
h the tree simultaneously to their own threshold and terminate whena goal is found. An alternative approa
h distributes the tree among pro
essors [4℄. Using this approa
h,the root node of the sear
h spa
e is given to the �rst pro
essor and other pro
essors are assigned subtreesof that root node as they request work. A
ompromise between these approa
hes is to divide the set ofpro
essors into
lusters [1℄. Ea
h
luster is given a unique
ost threshold, and the sear
h spa
e is dividedbetween pro
essors within ea
h
luster.Be
ause one pro
essor may run out of work before others, load balan
ing is used to a
tivate the idlepro
essor. Approa
hes must be sele
ted for de
iding when to load balan
e, whi
h pro
essor to approa
h formore work, and how mu
h work to share. In addition, methods for modifying the left-to-right order of thetree during sear
h
an yield substantial performan
e improvements for serial and parallel sear
h algorithms.The Eureka system merges together many parallel sear
h strategies. Parameters
an be set that
ontrolthe task distribution strategy, the load balan
ing strategies, and the ordering te
hniques. To automate thesele
tion of parallel sear
h strategies, Eureka The system sear
hes a sampling of the spa
e and
al
ulatessear
h spa
e features in
luding average bran
hing fa
tor, average heuristi
 estimate error, tree imbalan
e,heuristi
 bran
hing fa
tor, and heuristi
 distan
e estimate of the root. Information des
ribing the hardwareis also used su
h as the number of pro
essors and average
ommuni
ation laten
y.Initially, we used C4.5 to indu
e a de
ision tree from pre-
lassi�ed training examples. Training examplesrepresent runs of sample problem spa
es with varying sear
h strategies, and the
orre
t \
lassi�
ation" ofea
h training example represents the sear
h strategy yielding the greatest speedup. For ea
h new problem,Eureka performs a shallow sear
h through the spa
e to
olle
t features des
ribing the new problem spa
eand ar
hite
ture. Features of the tree are
al
ulated and used to index appropriate learned rules. Eurekathen initiates a parallel sear
h employing the sele
ted strategies.Two sour
es of un
ertainty arise in this domain that
an prevent traditional ma
hine learning te
hniquesfrom performing well. First, the sear
h spa
e feature values are estimates and thus not always a

urate.Se
ond, there does not always exist a
lear strategy winner for ea
h training
ase. On some probleminstan
es two or more strategy sele
tions perform almost equally well, and some run time varian
es o

uron many ma
hines.Due to these un
ertainties in the domain, we next model the problem with a belief network. We usean extension of belief networks known as in
uen
e diagrams. Apart from nodes that represent un
ertainvariables (oval nodes), in
uen
e diagrams also have de
ision nodes (re
tangular nodes) and a utility node

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 17

utility

speedup

idle
time

ordering

depth
overshoot

horizontal
overshoot

message
overhead

comm
overhead

hbf

numproc

imb
load
dist

initial
dist

b herror hroot

needed
iterations

bandwidth netdiam

latency

overhead

search
overhead

goal
angle

clusters

distrib

loadbal

giveaway

anticipFigure 4: A model of the fa
tors that in
uen
e speedup of parallel sear
h algorithms.Approa
h 1 Cluster 2 Clusters 4 Clusters C4.5 C4.5Fil BeliefNetworkSpeedup 55.30 60.98 58.79 57.14 86.76 68.66Table 2: Clustering Speedup Results(hexagonal node). By representing the way alternative de
isions in
uen
e the state of the domain, thein
uen
e diagram
an be used to arrive at optimal de
isions.A graphi
al representation of our in
uen
e diagram is shown in Figure 4. De
isions to be made in
ludethe task distribution strategy, number of
lusters, amount of work to share, anti
ipatory load balan
ingtrigger, type of load balan
ing, and tree ordering. For our parallel sear
h problem, Eureka's utility node inFigure 4 dire
tly depends on a single node of the domain { speedup. Conditional probability tables modelingthe probabilisti
 dependen
ies between nodes in the network are learned from provided training data.We tested the ability of the in
uen
e diagram to provide a basis of making parallel sear
h strategyde
isions by
omparing de
isions based on predi
ted speedup values from the in
uen
e diagram built usingNeti
a with de
isions based on the C4.5 learning system. To
reate test
ases, we ran 100 Fifteen Puzzleproblem instan
es multiple times on 32 pro
essors of an nCUBE, on
e using ea
h parallel sear
h strategy inisolation. Features of the sear
h spa
e, and ar
hite
ture are stored for ea
h problem.We
ompared the results of Neti
a-sele
ted strategies on test data to C4.5-sele
ted strategies and to ea
hstrategy used ex
lusively for all problem instan
es. Speedup results for various strategy de
isions averagedover all problem instan
es are shown in Table 2 below.From the results of this experiment, the belief network did outperform all of the �xed strategies as wellas C4.5 using all 100 problem instan
es. C4.5Fil yielded the best results, but was only trained and tested on
ases with
lear winners. Ea
h of the automated approa
hes to sele
ted sear
h strategies resulted in betterperforman
e than using just one �xed parallel sear
h strategy. These results indi
ate that ma
hine learningand un
ertainty reasoning te
hniques
an be e�e
tively used to perform automati
 sele
tion of parallel sear
hstrategies, and may be e�e
tive for other optimization problems as well.Referen
es[1℄ D J Cook and R C Varnell. Maximizing the bene�ts of parallel sear
h using ma
hine learning. InPro
eedings of the National Conferen
e on Arti�
ial Intelligen
e, pages 559{564. AAAI Press, 1997.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 18[2℄ Diane J Cook, Larry Hall, and Willard Thomas. Parallel sear
h using transformation-ordering iterative-deepening A*. International Journal of Intelligent Systems, 8(8):855{873, 1993.[3℄ Martin Frank, Piyawadee Sukavirija, and James D Foley. Inferen
e bear: designing intera
tive interfa
esthrough before and after snapshots. In Pro
eedings of the ACM Symposium on Designing Intera
tiveSystems, pages 167{175. Asso
iation for Computing Ma
hinery, 1995.[4℄ V Kumar and V N Rao. S
alable parallel formulations of depth-�rst sear
h. In Kumar, Kanal, andGopalakrishan, editors, Parallel Algorithms for Ma
hine Intelligen
e and Vision, pages 1{41. Springer{Verlag, 1990.[5℄ Henry Lieberman. Integrating user interfa
e agents with
onventional appli
ations. In Pro
eedings of theACM Conferen
e on Intelligent User Interfa
es. Asso
iation for Computing Ma
hinery, 1998.[6℄ A Mahanti and C Daniels. SIMD parallel heuristi
 sear
h. Arti�
ial Intelligen
e, 60(2):243{281, 1993.[7℄ Nihar R. Mahapatra and Shantanu Dutt. New anti
ipatory load balan
ing strategies for parallel A*algorithms. In Pro
eedings of the DIMACS Series on Dis
rete Mathemati
s and Theoreti
al ComputerS
ien
e, pages 197{232. Ameri
an Mathemati
al So
iety, 1995.[8℄ Steven Minton. Automati
ally
on�guring
onstraint satisfa
tion programs: a
ase study. Constraints,1(1):7{43, 1996.[9℄ Peter Norvig and D Cohn. Adaptive software. PC AI Magazine, 1997.[10℄ Judea Pearl. Probabilisti
 Reasoning in Intelligent Systems: Networks of Plausible Inferen
e. MorganKaufman, 1988.[11℄ Curt Powley and Ri
hard E Korf. Single-agent parallel window sear
h. IEEE Transa
tions on PatternAnalysis and Ma
hine Intelligen
e, 13(5):466{477, 1991.[12℄ S. Russell and P. Norvig. Arti�
ial Intelligen
e: A Modern Approa
h. Prenti
e Hall, 1994.[13℄ Ken Calvert Samrat Bhatta
harjee and Ellen W Zegura. An ar
hite
ture for a
tive networking. In HighPerforman
e Networking, 1997.[14℄ R. D. Sha
hter. Evaluating in
uen
e diagrams. Operations Resear
h, 34:871{882, 1986.[15℄ Peter Steenkiste, Allan Fisher, and Hui Zhang. Darwin: resour
e management for appli
ation-awarenetworks. Te
hni
al Report CMU-CS-97-195, Carnegie Mellon University, 1997.[16℄ S
ott Taylor, David Levine, Krishna Kavi, and D. J. Cook. A
omparison of multithreading implemen-tations*. In Yale Multithreaded Programming Workshop, 1998.[17℄ Jian Xu and Kai Hwang. Heuristi
 methods for dynami
 load balan
ing in a message-passing multi-
omputer. Journal of Parallel and Distributed Computing, 18(1):1{13, 1993.[18℄ Songnian Zhou. A tra
e-driven simulation study of dynami
 load balan
ing. IEEE Transa
tions onSoftware Engineering, 14(9):1327{1341, September 1988.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 19Adaptive Heuristi
 Methods for Maximum CliqueArun Jagota y and Laura A. San
his zy University of California, Santa Cruz; z Colgate University,Maximum Clique is the problem of �nding a largest set of pairwise adja
ent verti
es in a given graphG [5℄. This problem is NP-hard even to approximate well [1℄, and arises in several appli
ations [2℄. Thisproblem has attra
ted
onsiderable attention over the years (see the review published by Pardalos and Xuewith about 260 referen
es [15℄).For NP-hard problems su
h as Maximum Clique no eÆ
ient exa
t algorithms exist. Heuristi
 methodstherefore abound. In re
ent years resear
hers have begun to re
ognize the value of in
orporating adaptationinto heuristi
 methods (as one example, see [4℄). This short paper surveys our own work along these lines[11, 7, 17℄ whi
h in
orporates adaptation into multiple restarts methods in whi
h ea
h restart performsrandomized lo
al sear
h.We found in extensive experiments on Maximum Clique that the adaptive restarts we employed
onsis-tently worked no worse (and often better) than nonadaptive restarts, while imposing an almost negligible
omputational overhead. Simple forms of adaptation are also easy to add on to otherwise nonadaptivemethods. Thus it seems there is no reason not to do so.In this short paper we present our methods, then dis
uss some experimental results. Two types ofadaptation are explored|one in whi
h vertex weights are adapted, and the other in whi
h the initial
liqueis adapted. On di�erent types of graphs, the di�erent types of adaptation seem to work better.The Adaptive MethodsThe algorithms are best des
ribed as evolving from a base algorithm, whi
h we
all randomized greedy sear
h(RGS).FinalClique RGS(Graph G, WeightVe
tor w, Clique Ci)// w = (wi) where wi is vertex i's weight1. C = Ci;2. S = f v 2 GnC j v is adja
ent to every vertex in Cg;3. while S is not empty do4. Pi
k vertex i from S with probability wi=Pj2S wj ;5. Add vertex i to C;6. Re
ompute S as in step 2;7. return C;RGS works by extending the initial, possibly empty,
lique Ci to a �nal
lique C by adding feasibleverti
es one by one in a randomized greedy way. The greediness
omes in in step 4, sin
e the
hosen non-uniform distribution favors pi
king those verti
es from S that have large weights. The idea is to add somerandomization to avoid the usual traps that greedy falls into but not too mu
h so as to totally wipe out thegreediness. The randomization in RGS will also work well with multiple restarts.Next, we des
ribe a nonadaptive restarts method,
alled NA, on top of RGS. NA takes two argumentsin addition to the graph: a ve
tor w of weights on the verti
es, and the number k of restarts.FinalClique NA(Graph G, WeightVe
tor w, integer k)

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 201. C = ;;2. for r = 1 to k do3. Cr = RGS(G, w, ;);4. C = larger-set-of (C, Cr);5. return C;Noti
e that NA always
alls RGS from the same initial
lique, the empty set. It is obvious why NA willwork better than (a single
all to) RGS.In our work, we investigated two
hoi
es for w = (wi): (i) wi = 1 for all i and (ii) wi = d(i) for alli. Here d(i) is the degree of vertex i in the given graph G. We will denote the �rst
hoi
e as NA(1) andthe se
ond as NA(d). Interestingly, despite the intuitive appeal of the se
ond weighting (verti
es in large
liques have large degree), we found via extensive experimentation that NA(d) worked better than NA(1)only o

asionally (and sometimes worse). Perhaps the restarts o�set any possible bene�ts of degree-basedweighting.The third method, whi
h we
all AW, is an extension of NA that adapts the vertex weights from restartto restart.FinalClique AW(Graph G, WeightVe
tor w, integer k)1. C := ;;2. �1 := �2 := 1;3. for r := 1 to k do4. Cr := RGS(G, w, ;);5. if jCrj > jCj then6. wi := wi + �1 � (jCrj � jCj) for all i 2 Cr;7. else8. wi := wi + (�1 + �2 � (jCrj � jCj)) for all i 2 Cr;9. C := larger-set-of (C, Cr);10. �1 := 1:01� �1;11. �2 := 0:99� �2;12. return C;The vertex weights are adapted as follows. AW keeps tra
k of the size of the best
lique it has found sofar. If in the next restart, it �nds a better
lique then it \rewards" the verti
es in the
lique by in
reasingtheir weight, otherwise it \punishes" them by de
reasing their weight. The magnitude of the reward (orpunishment) is made to depend on the magnitude of the improvement (or worsening) and also on the restartnumber. With regards to the latter, an improvement found in a late restart
ounts for more, as does aworsening found in an early restart.We �nd that the method exhibits the following
hara
teristi
s. If an improved
lique is found in somerestart, AW fo
uses subsequent sear
h into its \neighborhood". If no further improvement is found soonenough, the sear
h gradually gets defo
used from this neighborhood.In extensive testing, AW often found signi�
antly larger
liques than NA in the same amount of allotedtime [11, se
 4.3℄.Like with NA, we investigated AW with the same two types of initial weighting, denoted AW(1) andAW(d) respe
tively. On
e again, there was no
lear winner between AW(1) and AW(d). AW(1) seemed towork a bit better overall. Perhaps the adaptive restarts o�set any possible bene�t of degree-based weighting.The fourth method, whi
h we
all AIC, is an alternative extension of NA that adapts the initial
lique,rather than the vertex weights, from restart to restart. Thus, unlike AW, AIC does not always start a restartfrom the same initial
lique. For the same number of restarts, AIC runs faster than AW be
ause it oftenstarts from a large
lique and thus has to grow it less. On the other hand, in extensive experiments we �nd

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 21that AIC often takes many more restarts to �nd the same quality solution than does AW. The reason forthis is not
lear.FinalClique AIC(Graph G, WeightVe
tor w, integer k)1. C = ;;2. Ci = ;;3. for r = 1 to k do4. Cr = RGS(w, Ci);5. if jCrj > jCj then6. Ci = Cr;7. Ci = Cin f one randomly-
hosen vertex in Ci g8. C = larger-set-of (C, Cr);9. return C;AIC exhibits
hara
teristi
s similar to those of AW, fo
using the sear
h into the neighborhood of a newly-found better
lique, defo
using subsequent sear
h gradually when this does not lead to an improvement.Like with NA and AW, we investigated AIC with the same two types of weighting, denoted AIC(1)and AIC(d) respe
tively. On
e again the results were mixed (sometimes AIC(1) worked better, sometimesAIC(d)).The AIC prin
iple was in
uen
ed by the work of T. Grossman [6℄ where the power of a simple greedyalgorithm for Maximum Clique was boosted signi�
antly and demonstrably (via extensive experiments)by adaptive initialization of a somewhat similar kind. Adaptations from restart to restart have also beenused in [4℄ and [3℄.Most of our experiments were done on slightly di�erent versions of NA, AW, and AIC in whi
h the numberof restarts given to ea
h method was not �xed in advan
e. Rather, the restart parameter k in ea
h of thesemethods was repla
ed by a \no progress" parameter np, and the method terminated when np su

essiverestarts led to no improvement in solution quality. Although this does not redu
e the number of parametersto be set, the np parameter is
learly superior to the k parameter.Experimental Results SummaryThis se
tion reports a summary of our
omputational experiments and results on NA(1), NA(d), AW(1),AW(d), AIC(1), and AIC(d). These methods were all evaluated on di�erent kinds of graphs: (i) graphswith prespe
i�ed maximum
lique size designed to be hard for the problem, (ii) random graphs of variousdensities, and (iii) highly
ompressible graphs of a
ertain type.The graphs of type (i) are des
ribed in detail in [11, 17℄. Experiments were
ondu
ted on a variety ofgraphs (parametrized by maximum
lique size C, and density D) of this type on 800 verti
es. The valueof the np parameter was (by trial and error) �xed to 100, for all the methods. On 800-vertex graphs ofdensity 0.70, AW(1) worked best. Interestingly, NA(1) worked better than AIC(1). On graphs of density0.9, AW(1) still worked best. This time however AIC(1) worked better than NA(1). The di�eren
es betweenthe performan
es were striking for the larger values of C. On graphs of density 0.9, AIC(1) worked best ongraphs with larger C. AW(1) worked better than NA(1). From these experiments, the following
lear trendsemerged: AIC(1) worked better on the denser graphs, AW(1) on the less dense graphs; for the same density,the solution quality di�erential was highest on graphs with the larger
liques.The graphs of type (ii) are parametrized by p, the probability of independently introdu
ing an edgebetween a pair of verti
es. The six methods were tested on ten 1000-vertex graphs ea
h for three values ofp. (The varian
e in the results was seen to be small, indi
ating that the small sample size should suÆ
e.)For p = 0:5 and p = 0:7, there was little di�eren
e in solution quality. For p = 0:99, AIC(d) worked best,

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 22with AIC(1) a
lose se
ond. The remaining methods were signi�
antly poorer, with AW(1) edging out theothers.The graphs of type (iii) are highly
ompressible in nature, and were designed to eli
it poor performan
efrom simple methods. It is diÆ
ult to des
ribe these graphs here, the reader is refered to [10℄. (In thatpaper it was experimentally demonstrated that these graphs weed out the poorer methods from the betterones, while random graphs don't.) Experiments were
ondu
ted on �fty 100-vertex graphs of this type. Onaverage, there was little di�eren
e between the solution quality found by all methods. AW(1) edged out theothers. Both NA methods were a
lose se
ond. Both AI methods were a bit poorer.Here we examine how well the new algorithms perform on these graphs. To fa
ilitate
omparisons, weevaluate the new algorithms on the exa
t same graphs evaluated earlier. The results are presented in thefull paper; here we summarize them. Both the NA algorithms perform very well. This
orrelates well withthe previous result that NA0(1,400) and NA0'(1,400) also worked very well. Here NA0' is a variant of NA0whi
h begins from the initial state V rather than from ;. Note that the only di�eren
e between NA and NA0is in the number of restarts used. It is reassuring to see that the
urrent performan
e of NA(1,150) is almostidenti
al to that of the earlier re
orded performan
e of NA0(1,400). The AW(1) algorithm performs thebest among the new algorithms; its performan
e is virtually identi
al to that of NA0'(1,400) whi
h workedbest in the original experiments. Note that AW(1) a
hieves this performan
e in roughly three-�fths as manyrestarts as did NA0'(1,400). Interestingly, both AI algorithms perform somewhat poorer.Con
lusions and Future WorkNo single winner emerged. Adding on adaptation to NA nonetheless never hurt (and often helped
onsider-ably).Our methods are easily extendible to a wider
lass of problems, that we
all indu
ed subgraph optimizationproblems, de�ned as follows: given a graph G and a property P on vertex-indu
ed subgraphs of G, we wishto �nd a maximum-
ardinality set U � V (G) whi
h satis�es P. Maximum Clique is a member of this
lass.There is a general theorem establishing intra
tability of a large sub
lass of problems in this
lass [14, 13℄.Our future work will involve testing how well our methods work on some other problems in this
lass.Referen
es[1℄ S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�
ation and hardness of approxi-mation problems. In The Pro
eedings of the 33rd Annual IEEE Symposium on Foundations of ComputerS
ien
e, pages 14{23, 1992.[2℄ E. Balas and C.S. Yu. Finding a maximum
lique in an arbitrary graph. SIAM Journal on Computing,15(4), November 1986.[3℄ S. Baluja and S. Davies. Combining Multiple Oprimization Runs with Optimal Dependen
y Trees.Te
hni
al Report, Department of Computer S
ien
e, Carnegie-Mellon University, 1997.[4℄ K.D. Boese, A.B. Kahng, and S. Muddu. A new adaptive multi-start te
hnique for
ombinatorial globaloptimizations. Operations Resear
h Letters, 16:101{113, 1994.[5℄ M.R. Garey and D.S. Johnson. Computers and Intra
tability: A Guide to the Theory of NP-Completeness.Freeman, New York, 1979.[6℄ T. Grossman. Applying the INN model to the MaxClique problem. In D.S. Johnson and M.A. Tri
k,editors, DIMACS Series: Se
ond DIMACS Challenge, pages 125{145. Ameri
an Mathemati
al So
iety,1996. Pro
eedings of the Se
ond DIMACS Challenge: Cliques, Coloring, and Satis�ability.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 23[7℄ A. Jagota. An adaptive, multiple restarts neural network algorithm for graph
oloring. European Journalof Operational Resear
h, 93:257{270, 1996.[8℄ A. Jagota and M. Garzon. On the Mappings of Optimization Problems to Neural Networks. In Pro
eedingsof World Congress on Neural Networks 1994, pages 391{398, IEEE, 1994.[9℄ J.H.M. Korst and E.H.L. Aarts. Combinatorial optimization on a Boltzmann ma
hine. Journal of Paralleland Distributed Computing, 6:331{357, 1989.[10℄ A. Jagota and K.W. Regan. Performan
e of neural net heuristi
s for maximum
lique on diverse highly
ompressible graphs. Journal of Global Optimization, 10:439{465, 1997.[11℄ A. Jagota, L. San
his, and R. Ganesan. Approximating maximum
lique using neural network andrelated heuristi
s. In D.S. Johnson and M.A. Tri
k, editors, DIMACS Series: Se
ond DIMACS Challenge,pages 169{204. Ameri
an Mathemati
al So
iety, 1996. Pro
eedings of the Se
ond DIMACS Challenge:Cliques, Coloring, and Satis�ability.[12℄ D.S. Johnson, C.R. Aragon, L.A. M
Geo
h, C. S
hevon. Optimization by Simulated Annealing: An Ex-perimental Evaluation, Part II (Graph Coloring and Number Partitioning). Operations Resear
h, 39:378{406, 1991.[13℄ C. Lund and M. Yannakakis. The approximation of maximum subgraph problems, In Pro
eedings of20th International Colloquium on Automata, Languages, and Programming, Le
ture Notes in Comput.S
i. 700, Springer-Verlag, 40-51.[14℄ M. Lewis and M. Yannakakis; The Node-Deletion Problem for Hereditary Properties is NP-Complete,Journal of Computer Systems and S
ien
es, 20, (1980).[15℄ P.M. Pardalos and J. Xue. The maximum
lique problem. Journal of Global Optimization, 4:301{328,1994.[16℄ L. San
his. Test Case Constru
tion for the Vertex Cover Problem. in N. Dean and G.E. Shannon,editors, Computation Support for Dis
rete Mathemati
s, pages 315{326. Ameri
an Mathemati
al So
iety,1994.[17℄ L. San
his and A. Jagota. Some experimental and theoreti
al results on test
ase generators for themaximum
lique problem. INFORMS Journal on Computing, 8:2:87{102, Spring 1996.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 24Probabilisti
 Modeling for Combinatorial OptimizationShumeet Baluja, S
ott DaviesCarnegie-Mellon University,This work originated in an attempt to
reate an expli
it probabilisti
 model of the behavior of geneti
algorithms [12℄[17℄[18℄. Geneti
 algorithms, or GAs,
an be viewed as
reating impli
it probabilisti
 modelsover possible solutions by maintaining a population of previously evaluated solutions. Rather than usingexpli
it models of how the parameters of high-quality solutions tend to relate to one another, GAs attempt topreserve these relationships by using
rossover-based re
ombination operators on members of the populationin order to generate new
andidate solutions.One attempt towards making the GA's probabilisti
 model more expli
it was the Population-BasedIn
remental Learning algorithm (PBIL) [1℄[3℄; this was further explored in [19℄[20℄[16℄. PBIL uses a verysimple probabilisti
 model that does not model inter-parameter dependen
ies | ea
h parameter is handledindependently. The PBIL algorithm works as follows: instead of using re
ombination/
rossover to
reate anew population, a real-valued ve
tor, P, is sampled. Assuming the solutions are represented as bit strings,P spe
i�es the probability of generating a 1 in ea
h bit position. Initially, all values in P are set to 0.5, sothat solutions are generated from the uniform distribution over bit strings. A number of solution ve
tors aregenerated by sto
hasti
ally sampling ea
h bit independently a

ording to P. The probability ve
tor is thenmoved towards the highest-quality solution ve
tors thus generated, in a manner similar to the updates usedin unsupervised
ompetitive learning [15℄. This
y
le is then repeated. The �nal result of the PBIL algorithmis the best solution generated. This basi
 version of PBIL is similar to early work in
ooperative systemsof dis
rete learning automata [23℄ and to the Bit-Based Simulated Crossover algorithm [22℄. Numerousextensions to this basi
 algorithm are possible; many are similar to those
ommonly used with geneti
algorithms, su
h as variable or
onstant mutation rates, maintenan
e of the best solution found throughoutthe sear
h, parallel sear
hes, or lo
al optimization heuristi
s.One of the goals of
rossover in GAs is to
ombine \building blo
ks" from two di�erent solutions to
reatenew sampling points. Be
ause all parameters are modeled independently, PBIL
annot propagate buildingblo
ks in a manner similar to standard GAs. Nonetheless, in a variety of standard ben
hmark problems usedto test GAs and Simulated Annealing approa
hes, PBIL performed extremely well [2℄. While GAs attemptto preserve important relationships betweem solution parameters, they do not do so expli
itly, and so mustrely on the re
ombination operator to
ombine random subsets of two \parent" solutions in hopes of
omingup with a
hild solution that maintains the important building blo
ks. Would algorithms that employedprobabilisti
 models in whi
h these relationships were a

ounted for expli
itly perform even better?The �rst extension to PBIL that
aptured dependen
ies was Mutual Information Maximization for InputClustering (MIMIC) [7℄. MIMIC measured the mutual information [10℄ between ea
h pair of parametersa
ross a set of high-quality solutions, and then used these statisti
s to greedily build a probabilisti
 model inthe form of a Markov
hain over the solution parameters. Subsequent resear
h [4℄ generalized this Markov
hain formalism to Bayesian networks [21℄. In parti
ular, the same type of statisti
s used by MIMIC wereused to learn a more general
lass of models | namely, trees rather than
hains | and the optimal modelwithin that
lass was found using Chow and Liu's algorithm [9℄. Figure 5 illustrates the types of models usedby PBIL, MIMIC, and this tree-based algorithm on a noisy version of a two-
olor graph
oloring problem.We use Bayesian network notation for our graphs: an arrow from a node X to a node Y indi
ates that Y 'sprobability distribution is
onditionally dependent upon the value of X . The
hain- and tree-shaped modelsshown were automati
ally learned during the pro
ess of optimization. (Note, however, that learned networksmay not typi
ally mirror optimization problems' stru
tures so
losely | in this example, the noise a
tuallyhelped the algorithms re
over the problem stru
ture.)Resear
hers have
ondu
ted numerous empiri
al
omparisons (e.g. [19℄,[2℄, [4℄, [13℄) of geneti
 algorithmsand algorithms based on probabilisti
 modeling. Surprisingly, in many of the larger, real-world problems,simple models that do not maintain dependen
y information (su
h as PBIL) outperform GAs, whi
h attempt

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 25
9

19

21
17

11

8

13

6 22

18

7

16

0 23 3

12

215

4 10

201415

14 4 10 5 1 2 3 23

0161872119922

6 13 17 11 8 12 20 15

9

19

21

5

2

1
16 7

8

0

23

3

22

12

20

14

4 15
17

18
11

10
13

6

������������0 1 2 21 22 23B:

D:

C:

A: Figure 5: A: A two-
olor graph-
oloringproblem. B: the empty dependen
y graph ef-fe
tively used by PBIL. C: the Markov
hainlearned by a MIMIC-like optimization algo-rithm. D: the Bayesian network learned bythe tree-based optimization algorithm.to
apture this information impli
itly. On test problems designed to exhibit large amounts of inter-parameterdependen
ies, PBIL's su

ess was less predi
table [11℄. However, in the large majority of these problems,the dependen
y-tree-based algorithm
onsistently outperformed the other optimization te
hniques [6℄.Perhaps the most interesting result found in this line of study is that the performan
e of the
ombina-torial optimization algorithms
onsistently improved as the a

ura
y of their statisti
al models in
reased:trees generally performed better than
hains, and
hains generally performed better than models with nodependen
ies. This suggests the possibility of using even more
omplex probabilisti
 models, although usingmodels that are too
omplex would hurt the optimization algorithms by preventing them from performingenough exploration of the sear
h spa
e. Unfortunately, when we move toward network models in whi
hvariables
an have more than one parent variable, the problem of �nding an optimal network with whi
h tomodel a given set of data be
omes NP-
omplete [8℄. Heuristi
s have been developed for �nding good networksin su
h situations (e.g. [14℄), and employing su
h methods in
onjun
tion with
ombinatorial optimizationis an ex
iting dire
tion for future resear
h. However, the O(n2) running time per iteration (where n is thenumber of solution parameters) required by the
hain- and tree-based optimization algorithms is alreadyprohibitively expensive on large-s
ale problems.This
omputational problem
an be alleviated by learning expensive probabilisti
 models only to generatestarting points for simpler, faster optimization algorithms. COMIT [5℄ (for \Combining Optimizers withMutual Information Trees") learned tree-based probabilisti
 models from the best solutions found duringprevious runs of hill-
limbing or PBIL, and sto
hasti
ally sampled these models to generate starting pointsfor further runs of these algorithms. In the experimental results, employing the tree-based models in thismanner typi
ally signi�
antly improved the solutions found by the faster optimization algorithms. Usingmore sophisti
ated probabilisti
 models for similar restarting algorithms is an interesting possible line ofresear
h, as is extending this methodology to optimization in real-valued spa
es.Referen
es[1℄ S. Baluja. Population-Based In
remental Learning: A Method for Integrating Geneti
 Sear
h BasedFun
tion Optimization and Competitive Learning. Te
hni
al Report CMU-CS-94-163, Carnegie MellonUniversity, 1994.[2℄ S. Baluja. Geneti
 Algorithms and Expli
it Sear
h Statisti
s. In M.C. Mozer, M.I. Jordan, and T. Pets
he,editors, Advan
es in Neural Information Pro
essing Systems 9. MIT Press, 1997.[3℄ S. Baluja and R. Caruana. Removing the Geneti
s from the Standard Geneti
 Algorithm. In A. Priedi-tis and S. Russell, editors, The International Conferen
e on Ma
hine Learning, 1995 (ML-95). MorganKaufmann Publishers, 1995.[4℄ S. Baluja and S. Davies. Using Optimal Dependen
y-Trees for Combinatorial Optimization: Learningthe Stru
ture of the Sear
h Spa
e. In Jr. D. H. Fisher, editor, The International Conferen
e on Ma
hineLearning, 1997 (ML-97). Morgan Kaufmann Publishers, 1997.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 26[5℄ S. Baluja and S. Davies. Fast Probabilisti
 Modeling for Combinatorial Optimization. In Pro
eedings ofthe 15th National Conferen
e on Arti�
ial Intelligen
e (AAAI-98), 1998.[6℄ S. Baluja and S. Davies. Pool-Wise Crossover in Geneti
 Algorithms: An Information-Theoreti
 Per-spe
tive. In Pro
eedings of FOGA-98, 1998.[7℄ J. De Bonet, C. Isbell, and P. Viola. MIMIC: Finding Optima by Estimating Probability Densities. InM.C. Mozer, M.I. Jordan, and T. Pets
he, editors, Advan
es in Neural Information Pro
essing Systems,1997.[8℄ D. Chi
kering. Learning Bayesian networks is NP-
omplete. In Learning from Data, pages 121{130.Springer-Verlag, 1996.[9℄ C. Chow and C. Liu. Approximating dis
rete probability distributions with dependen
e trees. IEEETrans. on Info. Theory, 14:462{467, 1968.[10℄ T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.[11℄ L.J. Eshelman, K.E. Mathias, and J.D. S
ha�er. Convergen
e Controlled Variation. In Pro
. Founda-tions of Geneti
 Algorithms 4. Morgan Kaufmann Publishers, 1996.[12℄ D. E. Goldberg. Geneti
 Algorithms in Sear
h, Optimization and Ma
hine Learning. 1989.[13℄ J. R. Greene. Population-Based In
remental Learning as a Simple Versatile Tool for Engineering Opti-mization. In Pro
eedings of the First International Conf. on EC and Appli
ations, pages 258{269, 1996.[14℄ D. He
kerman, D. Geiger, and D. Chi
kering. Learning Bayesian networks: The
ombination of knowl-edge and statisti
al data. Ma
hine Learning, 20:197{243, 1995.[15℄ J. Hertz, A. Krogh, and R. G. Palmer. Introdu
tion to the Theory of Neural Computing. Addison-Wesley,1991.[16℄ M. Hohfeld and G. Rudolph. Toward a Theory of Population-Based In
remental Learning. In Interna-tional Conferen
e on Evolutionary Computation, pages 1{5, 1997.[17℄ J. H. Holland. Adaptation in Natural and Arti�
ial Systems. Addison-Wesley, 1975.[18℄ K. De Jong. An analysis of the behavior of a
lass of geneti
 adaptive systems. Ph.d. thesis, 1975.[19℄ A. Juels. Topi
s in Bla
k-box Combinatorial Optimization. Ph.D. Thesis, University of California -Berkeley, 1996.[20℄ V. Kvasni
a, M. Pelikan, and J. Pospi
al. Hill Climbing with Learning (An Abstra
tion of Geneti
Algorithm). In Pro
eedings of the First International Conferen
e on Geneti
 Algorithms (MENDEL, '95),pages 65{73, 1995.[21℄ J. Pearl. Evidential reasoning using sto
hasti
 simulation of
ausal models. Arti�
ial Intelligen
e,32:245{257, 1987.[22℄ G. Syswerda. Simulated Crossover in Geneti
 Algorithms. In D. L. Whitley, editor, Foundations ofGeneti
 Algorithms 2, pages 239{255. Morgan Kaufmann Publishers, 1993.[23℄ M. Thatha
har and P. S. Sastry. Learning optimal dis
riminant fun
tions through a
ooperative gameof automata. IEEE Transa
tions on Systems, Man, and Cyberneti
s, 17(1),

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 27
Figure 6: Diagramati
 view of
lusteringAdaptive Approa
hes to Clustering for Dis
rete OptimizationWray Buntine, Lixin Su, and A. Ri
hard NewtonUniversity of California, Berkeley,Many optimization algorithms in the �eld of
omputer aided design (CAD) of VLSI systems su�er fromthe fa
t that they do not s
ale linearly with the problem
omplexity. Clustering te
hniques have beenadopted in some of these algorithms to address
omplexity but they are unfortunately limited to
lassesof problems where good intuitions about lo
ality hold. In this paper, we demonstrate that learning good
lusters is feasible for hyper-graph partitioning problem using a learning model for adaptive
lustering.Introdu
tionCAD tasks like pla
e and route and hyper-graph partitioning use a te
hnique
alled
lustering to a
hievesigni�
ant performan
e in
reases. In fa
t, on those problems where
lustering is used, it seems to be essentialto a
hieve state-of-the-art performan
e on large problems. Clustering
an be applied to SAT, pla
e-and-routeand hyper-graph partitioning by �nding "nearby" nodes/variables and for
ing their values to be identi
al.Consider the hypergraph partitioning problem. In this, a hypergraph (a graph with n-ary edges insteadof binary edges, e.g., VLSI
ir
uit) is to be split into two pie
es su
h that the number of hyper-edges split isminimum. Clustering on this works as follows:
ertain nodes are tied together or
lustered so that, thereafter,they always o

ur in the same partition. Nodes so tied together form a single super-node and indu
e anew problem with fewer nodes and often fewer hyper-edges (these merge or are absorbed within a singlesuper-node) For a generi
 graph partitioning problem (where all hyper-edges are of size 2), a representative
lustering is illustrated on the right of Figure 1. Noti
e the indu
ed edges onthe redu
ed problem.An engineering-oriented study of several methods appears in [Hau
k and Boriello, 1997℄.Clustering has typi
ally been based on ad ho
 heuristi
s for a neighborhood metri
 together with standard
lustering algorithms from the pattern re
ognition
ommunity, su
h as agglomerative
lustering. Methodsusing
lustering typi
ally generate a sequen
e of solutions to the one problem. The
urrent solution ismapped down into the redu
ed spa
e, some optimization is done on this redu
ed problem, and then thesolution mapped ba
k up into the original spa
e, thus a�e
ting a non-lo
al move guided by the
lustering.Sear
h then
ontinues in the full spa
e, and the pro
ess is repeated. Sin
e the sequen
e of solutions isdis
arded,
lustering is
urrently a stati
 approa
h that
annot improve during an extensive run on a singleproblem or on multiple problems.Clustering in Hypergraph partitioningThe optimization problem we
onsider here is standard hypergraph partitioning where the area of ea
hpartition is restri
ted to be less than 55% of the total area. Experiments were run on some of the larger

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 28problems in the ACM/SIGDA Layout Ben
hmark Suite from MCNC 1, where our
opy was obtained fromCharles Alpert's website at UCLA. Smaller problems are uninteresting for
lustering methods.One re
ent innovation in
lustering is by Hagen and Kahng [3℄ whereby the intermediate results of lo
alsear
h are
ombined to
reate
lusters. Note a p-way partition of a variable spa
e indu
es a
lustering withp super-nodes. Overlaying k binary partitions to form their �nest multi-way partitioning, similarly, indu
esa
lustering with up to 2k super-nodes. Hagen and Kahng re
ommend using k = 1:5 log2 C partitions forthis
onstru
tion, for C the number of nodes. Experiments on ben
hmarks reveal the problems here. As onein
reases k, the number of nodes in the indu
ed
lustering in
reases. For k > log2 C the indu
ed
lustering
an have up to C nodes, so nodes no longer o

ur in the same �nest partition by
han
e. For k large enough,the
omplexity of the sear
h on the indu
ed problem
an be just as bad as the
ompexity on the full problem.Note that if you are learning
lusters from data \
orre
tly," in some sense, then as k in
reases, the quality ofthe
lustering should only improve as you get more data, not de
rease as is the
ase here. For k smaller thanlog2 C,
lustering is now introdu
ing a random element, and thus as k de
reases, the results of the sear
hon the indu
ed problem should degrade to produ
e a poor partition. Yet standard
onne
tivity
lusteringmethods work well, essentially with k = 0. Hagen and Kahng found k = 1:5 log2 C to be a happy mediumprodu
ing
ompetitive results.Our simple probabilisti
 model of lo
al minima is as follows: we
laim
hara
teristi
s of the globaloptimum o

ur with frequen
y (1� q) in the perturbed lo
al optimum. When we sample a lo
al minima, itwill have on average noise q on top of the global minimum. Therefore, to estimate whether a
hara
teristi
X holds in the global minimum, we estimate the frequen
y with whi
h X o

urs in lo
al minima. If thisfrequen
y is greater than (1 � q), then under this model with high probability, X also o

urs in the globalminimum. Note that q is a free parameter in our model. We
laim di�erent optimization problems withhave di�erent intrinsi
 noise levels in the broader solution neighborhood, and thus we leave q free to vary.Thus statisti
al information about the lo
al minima are used to infer
hara
teristi
s of the global minimum.We apply this model to
lustering as follows: the
hara
teristi
s X we investigate take the form \node Aand node B fall in the same partition." We have taken 200 FM runs to �nd a sample of lo
al minima andhave re
orded partitions as well as the least
ut-size for the entire 200 FM runs, We have taken statisti
sfrom these samples and for every pair of nodes (A;B) we then estimate the frequen
y with whi
h they liein the same partition. For a given noise level q under the simple model above, we
an therefore estimatewhi
h nodes should belong in the same partition of the global minimum. Contingent on a value for q, thisinformation is then
ollated for all nodes (A;B) to produ
e a
lustering of the nodes, sin
e \node A and nodeB" fall in the same partition is an equivalen
e relation. This approa
h is labelled \adaptive
lustering".ExperimentsTo provide a ben
hmark, we have
ompared these results against
lustering obtained using the agglomerative
lustering method of Alpert et al. [1℄ ex
epting that re
ursive re-evaluation of the
onne
tivity measure is notdone. We also looked at 8 di�erent levels of agglomeration and
hose the one giving the minimum
ut-size. We
laim these modi�
ations are fair sin
e no re
ursive re-evaluation was done for the adaptive
lustering methodabove, and the
hoi
e of optimum
ut-size from 8
an only favor this method. Conne
tivity
lustering andadaptive
lustering are evaluated by running a high-performan
e non-
lustering algorithm on them, ASFMof [2℄. Be
ause this is run on the
lustered/redu
ed problems, its
omputation time is insigni�
ant. Wealso extra
ted the best published results for ea
h
ir
uit from the literature [5, 4, 3, 2℄. q is set in adapti
e
lustering by running the algorithm for q = 0:8; 0:85; 0:9; 0:95; 0:97 and pi
king the best, the additional
omputational overhead being insigni�
ant. The geometri
 mean of the
ut-sizes are reported in Table 1.Also note that
onne
tivity
lustering produ
ed problems with nodes/hypergraphs having a geometri
 meanof 2142/2424 whereas for adaptive
lustering, this is 704/1046.1Being industry2, industry3, avq-small, avq-large, S9234, S13207, S15850, S35932, SS38417, S38584, 19ks and primary2,with nodes and hyper-edges of the order of 8000{20000.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 29best published
onne
tivity
lustering adaptive
lustering on 200 FM best of 200 FM81.25 99.22 93.56 165.27Table 3: Geometri
 mean
ut-sizes from 12 industry ben
hmarkFrom the results we
an
on
lude the following: (1) The adaptive
lustering method generates signi�
antlysmaller hyper-graphs with signi�
antly smaller
ut-size. The di�eren
e is generally
onsistent a
ross
ir
uits.Thus adaptive
lustering is signi�
antly superior in forming
lusters to methods attaining
urrent bestpublished. (2) Running ASFM on
e on a adaptive
lustered hyper-graph, and no other
omputation, theresults on the far smaller
lustered hyper-graph are near best published for the problem. Typi
al state-of-art algorithms,
onsiderably more sophisti
ated with re
ursive
lustering and multiple iterations, s
orea geometri
 mean of about 86 on this measure so this simple approa
h is near state-of-the-art. (3) The
lustering results provide a full 200% in
rease over the best
ut-size resulting from the entire 200 FM runs.Thus there is
lear eviden
e that under this model we learnt signi�
ant information from the lo
al minimaabout the global minimum.Noti
e the method of adaptive
lustering des
ribed above uses 200 runs of FM as its sample. As a �nalexperiment, we produ
ed a hybrid of adaptive
lustering and
onne
tivity
lustering using Bayesian statisti
s.We mapped the
onne
tivity of an edge (A;B),
(A;B), into a probability distribution on the probabilitythat nodes A and B lie in the same partition at the global maximum. Lets
all this probability p(A;B).From
alibration data for numerous problems, we modeled the probability p(A;B) with a Beta distributionwith mean m(X) = 0:5 + 0:5 � (
(A;B)=0:6)0:7 and sample size 5. This means we pla
e a density fun
tionover p(A;B). Data from the FM runs is then used to update this Beta distribution using binomial samplingto obtain an estimate of p(A;B) in
orporating both the data from the FM runs and the
onne
tivity
(A;B).In statisti
al terms, the initial Beta distribution is a
onjugate prior and the information from the sample(nodes A;B in same partition or not) is its
omplementary likelihood fun
tion. Using k = 0:8 log2 C, a halfthat of Hagen and Kahng, we were able to a
hieved results with this method
omparable to the adaptive
lustering on 200 FM runs. Moreover, the method yields
lusters identi
al to
onne
tivity
lustering fork = 0. Con
lusionIn this paper, we proposed a simple probabilisti
 model of lo
al minima and applied it to
lustering forhyper-graph partitioning. The
lustering metri
 in the model
an also be improved through learning as moreproblems and their solutions are en
ountered. The experimental results on the tested ben
hmark
ir
uitsprovided a
lear eviden
e that under this model we learnt signi�
ant information from the lo
al minimaabout the global minimum. Referen
es[1℄ C. J. Alpert and A. B. Kahng. Re
ent developments in netlist partitioning: A survey. Integration: theVLSI Journal, 19(1{2):1{81, 1995.[2℄ W.L. Buntine, L. Su, and A.R. Newton. Adaptive methods for netlist partitioning. In IEEE/ACM Int.Conferen
e on Computer Aided Design, 1997.[3℄ S. Hau
k and G. Borriello. An evaluation of bipartitioning te
hniques. IEEE Transa
tions on Computer-Aided Design of Integrated Cir
uits and Systems, 16:849{866, 1997.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 30[4℄ G. Karypis, R. Aggrawal, V. Kumar, and S. Shekhar. Multilevel hyper-graph partitioning: Appli
ationin vlsi domain. In Pro
. Design Automation Conferen
e, pages 526{529, 1997.[5℄ J. Li, J. Lillis, and C.-K. Cheng. Linear de
omposition algorithm for VLSI design appli
ations. In IEEEInternational Conferen
e on Computer-Aided Design, pages 223{228, 1995.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 31Building a Basi
 Blo
k Instru
tion S
heduler withReinfor
ement Learning and RolloutsAmy M
Govern, Eliot Moss, and Andrew G. BartoUniversity of Massa
husetts, Amherst,Although high-level
ode is generally written as if it were going to be exe
uted sequentially, most modern
omputers exhibit parallelism in instru
tion exe
ution using te
hniques su
h as the simultaneous issue ofmultiple instru
tions. To take the best advantage of multiple pipelines, a
ompiler employs an instru
tions
heduler to reorder the ma
hine
ode. Building this instru
tion s
heduler is a large-s
ale optimizationproblem. Be
ause s
hedulers are spe
i�
 to the ar
hite
ture of ea
h ma
hine, and the general problem ofs
heduling instru
tions is NP-Complete, s
hedulers are
urrently hand-
rafted using heuristi
 algorithms.Building algorithms to sele
t and
ombine heuristi
s automati
ally using ma
hine learning te
hniques
ansave time and money. As
omputer ar
hite
ts develop new ma
hines, new s
hedulers would be built auto-mati
ally to test design
hanges rather than requiring hand-built s
hedulers for ea
h
hange. This wouldallow ar
hite
ts to explore the design spa
e more thoroughly and to use more a

urate metri
s in evaluatingdesigns.We formulated and tested two methods for automating the design of instru
tion s
hedulers: one usesrollouts, the other uses reinfor
ement learning (RL). We also investigated a
ombination of these two methods.Rollouts evaluate s
hedules online during
ompilation, whereas RL trains on more general programs and runsmore qui
kly at
ompile time. Both types of s
hedulers use a greedy algorithm to build s
hedules sequentiallywith no ba
ktra
king (list s
heduling).We fo
used on s
heduling basi
 blo
ks of instru
tions on the 21064 version [2℄ of the Compaq Alphapro
essor [6℄. A basi
 blo
k is a set of ma
hine instru
tions with a single entry point and a single exit point.It does not
ontain any bran
hes or loops. Our s
hedulers reorder the ma
hine instru
tions within a basi
blo
k but
annot rewrite, add, or remove instru
tions. The goal of the s
heduler is to �nd an ordering ofthe instru
tions in a blo
k that preserves the semanti
ally ne
essary ordering
onstraints of the original
odewhile minimizing the exe
ution time of the blo
k.The 21064 is a dual-issue ma
hine with two exe
ution pipelines. Compaq has made a 21064 simulatorpubli
ly available that also in
ludes a heuristi
 s
heduler for basi
 blo
ks, whi
h we refer to as DEC (tomaintain
onsisten
y with our earlier papers). The simulator gives the running time of a s
heduled blo
kassuming all memory referen
es hit the
a
he and all resour
es are available at the beginning of the blo
k.We also ran the s
hedules on a
luster of Compaq Alpha 21064 ma
hines to obtain a
tual run-time results.We tested ea
h s
heduling algorithm on the 18 SPEC95 ben
hmark programs (Reilly, 1995). Ten of theseare FORTRAN programs,
ontaining mostly
oating point
al
ulations, and eight are C programs, fo
usingmore on integer, string, and pointer
al
ulations. Ea
h was
ompiled using the
ommer
ial Compaq
ompilerat the highest level of optimization. We
all the s
hedules output by the
ompiler COM. A more detaileddes
ription of the problem and experimental setup
an be found in [4℄. As a performan
e measure, we usedthe ratio of a weighted exe
ution time of the s
heduler being assessed to a weighted exe
ution time of DEC,where the weight of ea
h blo
k is the number of times that blo
k is exe
uted. This ratio is less than onewhenever a s
heduler produ
ed a faster running time than DEC.Rollout S
hedulingRollout s
heduling works like this: given a set of
andidate instru
tions to add to a partial s
hedule, thes
heduler appends ea
h
andidate to the partial s
hedule and then follows a �xed poli
y, �, to s
hedule theremaining instru
tions. The running time of ea
h
ompleted s
hedule is determined. After rolling out ea
h
andidate (repeatedly for sto
hasti
 poli
ies), the s
heduler sele
ts the instru
tion with the best estimatedrunning time. (Rollouts were used in ba
kgammon by Woolsey, 1991, Galperin, 1994, and Tesauro andGalperin, 1996).).

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 32Bertsekas et al. (1997) proved that if we used the DEC s
heduler as �, we would perform no worse thanDEC, but an ar
hite
t proposing a new ma
hine would not have su
h a good heuristi
 poli
y available.Therefore, we
onsidered rollouts using (1) the random poli
y, denoted RANDOM-�, in whi
h a rolloutmakes all
hoi
es in a valid but uniformly random fashion (20 rollouts per instru
tion); (2) the the optimizing
ompiler COM, denoted COM-�; and (3) the DEC s
heduler itself, denoted DEC-�. (For the latter two,only one rollout per instru
tion was needed sin
e ea
h is deterministi
). As a baseline s
heduler, we alsos
heduled ea
h blo
k with a valid but uniformly random ordering, denoted RANDOM.The following table summarizes the performan
e of the rollout s
heduler for ea
h poli
y as
omparedDEC on all 18 ben
hmark programs for both the simulator and the a
tual exe
ution times. All numbers aregeometri
 means of the performan
e measure over 30 runs of ea
h ben
hmark. Ratios less than one (itali
s)mean that the s
heduler outperformed DEC.RANDOM RANDOM-� COM COM-� DEC-�Sim Real Sim Real Sim Real Sim Real Sim RealFortran geometri
 mean: 1.417 1.112 1.093 1.050 1.040 1.003 1.008 1.000 0.987 1.001C geometri
 mean: 1.123 1.028 1.003 0.996 1.017 0.991 0.995 0.994 0.991 1.008Overall geometri
 mean: 1.278 1.074 1.052 1.026 1.030 0.998 1.002 0.998 0.989 1.004As expe
ted, the random s
heduler performed very poorly (27:8% slower than DEC for simulation mode).In
ontrast, RANDOM-�
ame within 5% of the running time of DEC. COM was only 3% slower than DECand outperformed DEC on two appli
ations; and COM-� outperformed DEC on 6 appli
ations. The DEC-�s
heduler was able to outperform DEC on all appli
ations, produ
ing s
hedules that ran about 1:1% fasterthan those produ
ed by DEC. Although this improvement may seem small, the DEC s
heduler is known tomake optimal
hoi
es 99:13% of the time for blo
ks of size 10 or less [7℄. The a
tual performan
e of thebinaries built using ea
h of our s
hedulers was similar to the performan
e in the simulator, although withsmaller di�eren
es, showing that the assumptions that DEC makes for the simulator
an be detrimental onthe a
tual ma
hine.Although the performan
e of the rollout s
heduler
an be ex
ellent, rollouts are inherently
omputation-ally expensive. Rollouts
an be used to optimize s
hedules for important blo
ks (those with long runningtimes or whi
h are frequently exe
uted) within a program but not for s
heduling large programs unless
om-putation time improves. With the performan
e and the timing of the rollout s
hedulers in mind, we lookedto RL to obtain high performan
e at faster running times.Reinfor
ement LearningWe used a temporal di�eren
e (TD) algorithm to estimate the value fun
tion of the
urrent s
heduling poli
y.At the same time, we used this estimate to update the
urrent poli
y. This results in a kind of generalizedpoli
y iteration (Sutton and Barto, 1998) that tends to improve the poli
y over time. Instead of learning thedire
t value of
hoosing instru
tion A or instru
tion B, our RL system learned a preferen
e fun
tion between
andidate instru
tions: it learned the di�eren
e of the returns resulting from
hoosing instru
tion A overinstru
tion B. The preferen
e fun
tion was represented as a weighted sum of a set of feature values des
ribingthe
urrent partial s
hedule and two
andidate instru
tions. Ea
h feature was derived from knowledge of theDEC simulator. At ea
h
hoi
e point during learning, the RL s
heduler
hooses the most preferred a
tiona

ording to the
urrent value fun
tion with a high probability, and otherwise
hooses a random but validinstru
tion. The reward was zero until a blo
k was s
heduled, in whi
h
ase it was a measure of how well thes
hedule outperformed DEC, normalized by the blo
k size. A dis
ussion of how well other reward fun
tionsperformed
an be found in [4℄.We trained the RL s
heduler for 100 epo
hs on the appli
ation
ompress95, and we used the best resultingvalue fun
tion to s
hedule the other 17 ben
hmarks. The results are shown below. As before, we also testedthe s
hedules on Compaq Alphas.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 33Performan
e using the DEC reward fun
tionFortran programs C programsApp Sim Real App Sim Real App Sim Real App Sim Realapplu 1.094 1.017 apsi 1.090 1.029

1 1.023 1.007
ompress95 0.991 0.967fpppp 1.086 1.038 hydro2d 1.036 1.002 go 1.034 0.925 ijpeg 1.025 1.031mgrid 1.410 1.132 su2
or 1.035 1.012 li 1.016 1.004 m88ksim 1.012 0.983swim 1.569 1.007 tom
atv 1.061 1.028 perl 1.022 0.997 vortex 1.035 0.977turb3d 1.145 1.016 wave5 1.089 0.994 C geometri
 mean: 1.020 0.986Fortran geometri
 mean: 1.151 1.027 Overall geometri
 mean: 1.090 1.009By training the RL s
heduler on
ompress95 for 100 epo
hs, we were able to outperform DEC on
om-press95. The RL s
heduler
ame within 2% of the performan
e of DEC on all C appli
ations and within 15%on unseen Fortran appli
ations. Although the Fortran performan
e is not as good as that on the C appli
a-tions, the RL s
heduler has more than halved the di�eren
e between RANDOM and DEC. This demonstratesgood generalization a
ross basi
 blo
ks. Although there are ben
hmarks that perform mu
h more poorlythan the rest (mgrid and swim), those ben
hmarks perform more than 100% worse than DEC under theRANDOM s
heduler. In a
tual exe
ution of the learned s
hedules, the RL s
heduler outperformed DECon the C appli
ations while
oming within 2% of DEC on the Fortran appli
ations. We also experimentedwith training the RL s
heduler on the Fortran program applu. By doing so, the simulated performan
e onFortran appli
ations improved from 15% slower than DEC to only 8% slower than DEC. At the same time,performan
e on unseen C programs slowed by slightly less than 1%.Combining Reinfor
ement Learning with RolloutsWe also experimented with a s
heduler, RL-�, that used the value fun
tion learned by RL on
ompress95 asthe rollout poli
y. The results are shown below.Fortran programs C programsApp Sim Real App Sim Real App Sim Real App Sim Realapplu 1.017 0.999 apsi 1.015 1.012

1 1.000 1.005
ompress95 0.974 1.014fpppp 1.021 0.992 hydro2d 1.006 0.999 go 1.001 0.991 ijpeg 0.986 0.986mgrid 1.143 1.027 su2
or 1.006 1.010 li 0.995 1.005 m88ksim 0.998 0.979swim 1.176 1.003 tom
atv 1.035 0.999 perl 0.996 0.981 vortex 1.001 0.984turb3d 1.039 0.988 wave5 1.025 0.992 C geometri
 mean: 0.994 0.993Fortran geometri
 mean: 1.047 1.002 Overall geometri
 mean: 1.023 0.998By adding only one rollout, we were able to improve the C results to be faster than DEC overall. TheFortran results improved from 15% slower to only 4:7% slower than DEC. When exe
uting the binaries fromthe RL-� s
hedules, a user would see slightly faster performan
e than DEC.Con
lusionsWe have demonstrated two su

essful methods of building instru
tion s
hedulers for straight line
ode.The �rst method, using rollouts, was able to outperform a
ommer
ial s
heduler both in simulation and ina
tual run-time results. The downside of using a rollout s
heduler is its inherently slow running time. Byusing an RL s
heduler, we were able to maintain good performan
e while signi�
antly redu
ing s
hedulingtime. Finally, we showed that a
ombination of RL and rollouts was able to
ompete with the
ommer
ials
heduler. In a system where multiple ar
hite
tures are being tested, any of these methods
ould provide agood s
heduler with minimal setup and training.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 34A
knowledgmentsThis work was supported in part by the National Physi
al S
ien
e Consortium, Lo
kheed Martin, Advan
edTe
hnology Labs, AFOSR grant F49620-96-1-0234 to Andrew G. Barto, and NSF grant IRI-9503687 toRoderi
 A. Grupen and Andrew G. Barto. We also thank Sun Mi
rosystems, Hewlett-Pa
kard, and Com-paq/Digital Equipment Corporation for their support.Referen
es[1℄ Bertsekas, D. P., Tsitsiklis, J. N. & Wu, C. (1997). Rollout algorithms for
ombinatorial optimization.Journal of Heuristi
s.[2℄ DEC (1992). DEC
hip 21064-AA Mi
ropro
essor Hardware Referen
e Manual (�rst edition Ed.). May-nard, MA: Digital Equipment Corporation.[3℄ Galperin, G. (1994). Learning and improving ba
kgammon strategy. In Pro
eedings of the CBCL LearningDay. Cambridge, MA.[4℄ M
Govern, A., Moss, E. & Barto, A. G. (1999). Building a basi
 blo
k instru
tion s
heduler withreinfor
ment learning and rollouts. Ma
hine Learning. A

epted to appear.[5℄ Reilly, J. (1995). SPEC des
ribes SPEC95 produ
ts and ben
hmarks. SPEC Newsletter.[6℄ Sites, R. (1992). Alpha Ar
hite
ture Referen
e Manual. Maynard, MA: Digital Equipment Corporation.[7℄ Stefanovi�
, D. (1997). The
hara
ter of the instru
tion s
heduling problem. University of Massa
husetts,Amherst.[8℄ Sutton, R. S. & Barto, A. G. (1998). Reinfor
ement Learning. An Introdu
tion. Cambridge, MA: MITPress.[9℄ Tesauro, G. & Galperin, G. R. (1996). On-line poli
y improvement using Monte-Carlo sear
h. In Advan
esin Neural Information Pro
essing: Pro
eedings of the Ninth Conferen
e. MIT Press.[10℄ Woolsey, K. (1991). Rollouts. Inside Ba
kgammon, 1(5), 4{7.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 35\STAGE" Learning for Lo
al Sear
hJustin A. Boyan y and Andrew W. Moore zy NASA Ames Resear
h Center; z Carnegie-Mellon University,Stage is a ma
hine-learning algorithm for a

elerating the performan
e of lo
al sear
h. Colle
ting datafrom sample sear
h traje
tories, Stage builds an auxiliary evaluation fun
tion whi
h is then used to biasfuture sear
h traje
tories toward better optima. The algorithm is des
ribed only brie
y here; for fullerdes
riptions please see [3, 1℄. Other algorithms related to STAGE that are also des
ribed in this surveyin
lude the
ontributions of Moll et al. and Su and Buntine.The auxiliary evaluation fun
tion that Stage builds is an approximation to this predi
tive fun
tion:V �(x) def= expe
ted best Obj value seen on a traje
tory that starts from state x andfollows lo
al sear
h method �Here, � represents a lo
al sear
h method su
h as hill
limbing or simulated annealing, and Obj : X ! < isthe obje
tive fun
tion whi
h we would like to minimize. From a reinfor
ement learning perspe
tive, �
anbe seen as a poli
y for exploring a Markov De
ision Pro
ess, and V � is the value fun
tion of that poli
y:it predi
ts the eventual expe
ted out
ome from every state. Thus, well-studied learning algorithms su
h asTD(�) [7, 2℄ may be applied to approximate V � from sampled sear
h traje
tories. Here, we approximateV � using a regression model, where states x are en
oded as real-valued feature ve
tors. (Su
h features areplentiful in real-world appli
ations.) We denote the mapping from states to features by F : X ! <D, andour approximation of V �(x) by ~V �(F (x)).The approximate value fun
tion ~V �(F (x)) evaluates the promise of state x as a starting point for algo-rithm �. To �nd the most promising starting point, then, we must optimize ~V � over X . Stage does thisby applying hill
limbing with ~V � instead of Obj as the evaluation fun
tion. As illustrated in Figure 7a,Stage repeatedly interleaves two di�erent stages of lo
al sear
h: running the original method � on Obj, andrunning hill
limbing on ~V � to �nd a promising new starting state for �. Thus, Stage
an be viewed as alearning multi-restart approa
h to lo
al sear
h.(7a) π

π~
optimize V
Hillclimb to

for V ; retrain the fitteroptimize Obj
πRun to

starting state for

~produces new training data

produces good new
π

(7b)
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0 (7
) 8

 7
 6
 5
 4
 3
 2
 1
 0

(7d)
0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
va

ria
nc

e
of

 b
in

 fu
lln

es
s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Obj (7e) Vpi_1 (second iteration)

 8
 9

 10
 11
 12
 13
 14

10152025300

0.05

0.1

-15

-10

-5

0

5

10

15

20

Obj(x)

Var(x)

(7f)
0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
va

ria
nc

e
of

 b
in

 fu
lln

es
s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Obj

HC on Vpi_1
HC on Obj

Figure 7: Stage working on the bin-pa
king exampleWe illustrate Stage's operation with a small example from the NP-
omplete domain of bin-pa
king [4℄,shown in Figure 7b. Pa
ked optimally, this set of 30 items �lls 9 bins exa
tly to
apa
ity (Figure 7
). Wede�ne a lo
al-sear
h operator whi
h moves a single random item to a random new bin with suÆ
ient spare
apa
ity, and we de�ne two state features F (x) for use by Stage:

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 361. The a
tual obje
tive fun
tion, Obj = # of bins used.2. Var = the varian
e in fullness of the non-empty bins. (This feature is similar to a
ost fun
tion termintrodu
ed in [5℄.)Two traje
tories of sto
hasti
 hill
limbing in this 2-D feature spa
e are plotted in Figure 7d. Both traje
toriesstart at the initial state where ea
h item is in its own bin (Obj = 30;Var = 0:011), and they end at di�erentlo
al optima: (Obj = 13;Var = 0:019) and (Obj = 11;Var = 0:022), respe
tively. Stage, trained byquadrati
 regression to predi
t the observed out
omes 13 and 11 from those two traje
tories, learns theapproximate value fun
tion shown in Figure 7e. Note how the
ontour lines shown on the base of the surfa
eplot
orrespond to smoothed versions of the training traje
tories. Extrapolating, ~V � predi
ts that the thebest starting points for hill
limbing are on ar
s with higher Var(x).Stage swit
hes to the auxiliary evaluation fun
tion ~V � and hill
limbs to try to �nd a good new startingpoint. The resulting traje
tory, shown as a dashed line in Figure 7f, goes from (Obj = 11;Var = 0:022) upto (Obj = 12;Var = 0:105). Note that the sear
h was willing to a

ept some harm to the true obje
tivefun
tion during this stage. From the new starting state, hill
limbing on Obj does indeed lead to a yet betterlo
al optimum at (Obj = 10;Var = 0:053). During further iterations, the approximation of ~V � is furtherre�ned, and Stage manages to dis
over the global optimum at (Obj = 9;Var = 0) on iteration seven.ResultsExtensive experimental results are given in Table 4. We
onstrast the performan
e of Stage with that ofmulti-start sto
hasti
 hill
limbing, simulated annealing, and domain-spe
i�
 algorithms where appli
able,on six domains:Bin-pa
king. As in the example above, but with a 250-item ben
hmark instan
e.Channel routing. Lay out wires so as to minimize the width of a
hannel in VLSI.Bayes Net Stru
ture-Finding. Find the graph stru
ture that best
aptures the dependen
ies among theattributes of a data set.Radiotherapy Treatment Planning. Produ
e a treatment plan that meets target radiation doses for atumor while minimizing damage to sensitive nearby stru
tures. (Experiments were
ondu
ted on asimpli�ed 2-D version of the problem.)Cartogram Design. For geographi
 visualization purposes, redraw a map of the USA so that the states'areas are proportional to population, while minimally deforming the overall shape.Boolean Satis�ability. Minimize the number of unsatis�ed
lauses of a Boolean formula expressed inCNF. Here, Walksat [6℄ rather than hill
limbing was used as the baseline lo
al sear
h pro
edure forStage's learning.On ea
h instan
e, all algorithms were held to the same number M of total sear
h moves
onsidered, andrun N times. Full details of these experiments may be found in [1℄. The results, summarized in Table 4,indi
ate that Stage always learned to outperform the baseline lo
al sear
h method on whi
h it was trained,and usually outperformed simulated annealing as well.TransferIn the above experiments, the
omputational
ost of training a fun
tion approximator on V � was minimal|typi
ally, 0{10% of total exe
ution time. However, Stage's extra overhead would be
ome signi�
ant if many

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 37Problem Algorithm Performan
e over N runsInstan
e mean best worstBin-pa
king Hill
limbing, patien
e=250 109.38� 0.10 108 110(u250 13, opt=103) Simulated annealing 108.19� 0.09 107 109M = 105; N = 100 Best-Fit Randomized 106.78� 0.08 106 107Stage, quadrati
 regression 104.77� 0.09 103 105Channel routing Hill
limbing, patien
e=250 22.35� 0.19 20 24(YK4, opt=10) Simulated annealing, Obj(x) = w 14.32� 0.10 13 15M = 5�105; N = 100 Stage, linear regression 12.42� 0.11 11 14Bayes net Hill
limbing, patien
e=200 440567� 52 439912 441171(ADULT2) Simulated annealing 440924� 134 439551 444094M = 105; N = 100 Stage, quadrati
 regression 440432� 57 439773 441052Radiotherapy Hill
limbing, patien
e=200 18.822�0.030 18.003 19.294(5E) Simulated annealing 18.817�0.043 18.376 19.395M = 104; N = 200 Stage, quadrati
 regression 18.721�0.029 18.294 19.155Cartogram Hill
limbing, patien
e=200 0.174�0.002 0.152 0.195(US49) Simulated annealing 0.037�0.003 0.031 0.170M = 106; N = 100 Stage, quadrati
 regression 0.056�0.003 0.038 0.132Satis�ability Walksat + Æw = 0 (hill
limbing) 690.52� 1.96 661 708(par32-1.
nf, opt=0) Walksat, noise=0,
uto�=106, tries=100 15.22� 0.35 9 19M = 108; N = 100 Stage(Walksat), quadrati
 regression 5.36� 0.33 1 9Table 4: Comparative results on a variety of minimization domains. For ea
h problem, all algorithms wereallowed to
onsider the same �xed number of movesM . Ea
h line reports the mean, 95%
on�den
e intervalof the mean, best, and worst solutions found by N independent runs of one algorithm on one problem.Stage was best on average (boldfa
ed) in �ve of six domains.more features or more sophisti
ated fun
tion approximators were used. For some problems su
h
ost is worthit in
omparison to a non-learning method, be
ause a better or equally good solution is obtained with overallless
omputation. But in those
ases where we use more
omputation, the Stage method may neverthelessbe preferable if we are then asked to solve further similar problems (e.g., a new
hannel routing problemwith di�erent pin assignments). Then we
an hope that the
omputation we invested in solving the �rstproblem will pay o� in the se
ond, and future, problems be
ause we will already have a ~V � estimate. Thise�e
t is termed transfer.
(a)

105

110

115

120

125

1000 10000 100000

N
um

be
r

of
 b

in
s

(1
03

 is
 o

pt
im

al
)

Number of moves considered

STAGE
X-STAGE (b)

10

15

20

25

30

35

40

45

50

5000 50000 500000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE
X-STAGE

Figure 8: Optimization performan
e with transfer (X-STAGE) and without transfer (STAGE) on bin-pa
king(a) and
hannel routing (b). Note the logarithmi
 s
ale of the x-axis.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 38We investigated the potential for transfer in lo
al sear
h with a modi�ed algorithm
alled X-Stage.The X-Stage algorithm uses a simple voting me
hanism to
ombine arbitrarily many previously trained ~V �fun
tions; full details of the voting me
hanism are given in [1℄. Figure 8 shows performan
e
urves illustratingtransfer in the domains of bin-pa
king and
hannel routing. In the bin-pa
king experiment (a), X-Stage
ombined 19 previously trained ~V � fun
tions; it rea
hes good performan
e levels more qui
kly than Stage.However, after only about 10 learning iterations and 10,000 evaluations, the average performan
e of Stageex
eeds that of X-Stage on the new instan
e. In the
hannel-routing experiment (b), X-Stage
ombined 8previously trained ~V � fun
tions. This time, the voting-based restart poli
y maintained its superiority overthe instan
e-spe
i�
 learned poli
y for the duration of the run.These preliminary experiments indi
ate that the knowledge STAGE learns during problem-solving
anindeed be pro�tably transferred to novel problem instan
es. Future work will
onsider ways of
ombiningpreviously learned knowledge with new knowledge learned during a run, so as to have the best of both worlds:exploiting general knowledge about a family of instan
es to rea
h good solutions qui
kly, and exploitinginstan
e-spe
i�
 knowledge to rea
h the best possible solutions.Dis
ussionUnder what
onditions will Stage work? Intuitively, Stage maps out the attra
ting basins of a domain'slo
al minima. When there is a
oherent stru
ture among these attra
ting basins, Stage
an exploit it.Identifying su
h a
oherent stru
ture depends
ru
ially on the user-sele
ted state features, the domain'smove operators, and the regression models
onsidered. What this work has shown is that for a wide varietyof large-s
ale problems, with very simple
hoi
es of features and models, a useful stru
ture
an be identi�edand exploited. Referen
es[1℄ J. A. Boyan. Learning Evaluation Fun
tions for Global Optimization. PhD thesis, Carnegie MellonUniversity, 1998.[2℄ J. A. Boyan. Least-squares temporal di�eren
e learning. In Ma
hine Learning: Pro
eedings of theSixteenth International Conferen
e (ICML), 1999. (Best Paper Award).[3℄ J. A. Boyan and A. W. Moore. Learning evaluation fun
tions for global optimization and Booleansatis�ability. In Pro
eedings of the Fifteenth National Conferen
e on Arti�
ial Intelligen
e (AAAI), 1998.(Outstanding Paper Award).[4℄ E. G. Co�man, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin pa
king: a survey.In D. Ho
hbaum, editor, Approximation Algorithms for NP-Hard Problems. PWS Publishing, 1996.[5℄ E. Falkenauer and A. Del
hambre. A geneti
 algorithm for bin pa
king and line balan
ing. In Pro
.of the IEEE 1992 International Conferen
e on Roboti
s and Automation, pages 1186{1192, Ni
e, Fran
e,May 1992.[6℄ B. Selman, H. Kautz, and B. Cohen. Lo
al sear
h strategies for satis�ability testing. In Cliques, Coloring,and Satis�ability: Se
ond DIMACS Implementation Challenge. Ameri
an Mathemati
al So
iety, 1996.[7℄ R. S. Sutton. Learning to predi
t by the methods of temporal di�eren
es. Ma
hine Learning, 3, 1988.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 39Enhan
ing Dis
rete Optimization with Reinfor
ement Learning:Case Studies Using DARPRobert Moll, Theodore J. Perkins, and Andrew G. BartoUniversity of Massa
husetts, Amherst,Introdu
tionReinfor
ement learning methods
an be used to improve the performan
e of algorithms for dis
rete optimiza-tion by learning evaluation fun
tions that predi
t the out
ome of sear
h. In this study we use reinfor
ementlearning (RL) for developing good solutions to a parti
ular NP-
omplete logisti
s problem, namely the Dial-A-Ride Problem (DARP), a variant of the better-known traveling salesman's problem. DARP is a usefulproblem for study be
ause the spa
e of feasible solutions to a DARP instan
e has a nonuniform stru
turewhi
h is nevertheless
oherent, in the sense that relatively simple and easily
omputable features behavesimilarly for all instan
es of all sizes, and
an therefore be
ombined to form a reasonably a

urate instan
e-independent optimal value fun
tion approximation.We summarize our te
hnique as follows. Using the TD(�) algorithm in an o�-line learning phase, a valuefun
tion is learned for DARP whi
h estimates performan
e along lo
al sear
h traje
tories in the spa
e offeasible solutions. Be
ause of the general
oheren
e of the Dial-A-Ride problem, the resulting value fun
tionis e�e
tive as a lo
al sear
h
ost fun
tion for all DARP instan
es of all sizes. We believe our methodology isbroadly appli
able to many
ombinatorial optimization problems. Our resear
h on enhan
ement te
hniquesfor lo
al sear
h
ombines aspe
ts of previous work by Zhang and Dietteri
h [5℄, Boyan and Moore [1℄, Boyan[2℄, Healy and Moll [3℄, and Healy [4℄.The Dial-A-Ride ProblemDARP has the following formulation. A van is parked at a terminal. The driver re
eives
alls from N
us-tomers who need rides. Ea
h
all identi�es the lo
ation of a
ustomer, as well as that
ustomer's destination.The van must be routed so that it starts from the terminal, visits ea
h
ustomer pi
k-up and drop-o� site,and then returns to the terminal. For a tour to be feasible, every pi
k-up site must pre
ede its paired drop-o�site. The van has unlimited
apa
ity. The obje
tive of the problem is to minimize tour length.We impose a neighborhood stru
ture on the spa
e of feasible solutions to a DARP instan
e. If s is alegal tour, we write A(s) for the neighbors of s. Most prominent in our work is the \2-opt" neighborhoodstru
ture of [7℄, in whi
h two tours are neighbors if the �rst
an be transformed into the se
ond by reversing asubsequen
e of site visits in the �rst tour. This neighborhood stru
ture is highly non-uniform: neighborhoodsize varies between O(N) and O(N2). A \3-opt" neighborhood stru
ture also makes sense for DARP [8℄,and the "3-opt" algorithm of [7℄, suitably modi�ed, is extremely e�e
tive but very slow.Following [5, 1, 3℄, we note that se
ondary
hara
teristi
s of feasible solutions
an provide valuable infor-mation for sear
h algorithms. From the point of view of lo
al sea
h, su
h
hara
teristi
s
an be important
omponents of a generalized
ost fun
tion for hill-
limbing. A value fun
tion,
onstru
ted using RL, andasso
iating, with every state, an estimate of performan
e along a lo
al sear
h traje
tory starting from thatstate, is pre
isely su
h a generalized
ost fun
tion. Indeed, by adjusting the parameters of a fun
tion approx-imation system whose inputs are feature ve
tors des
ribing feasible solutions, a
omputationally tra
tableRL algorithm
an produ
e a
ompa
t representation of su
h an approximate optimal value fun
tion V .Elaborating on this s
heme, our approa
h operates in two phases. In the learning phase, a value fun
tion islearned by applying the TD(�) algorithm to several thousand suitably normalized randomly
hosen instan
esof the problem. In the performan
e phase, the resulting value fun
tion, now held �xed, is used to guide lo
alsear
h for additional problem instan
es. This approa
h is in prin
iple appli
able to any suitably
oherent

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 40
ombinatorial optimization problem.Enhan
ed 2-opt for DARPIn the learning phase identifed above, we
ondu
t training episodes until we are satis�ed that the fun
tionapproximator's weighting s
heme has stabilized. For ea
h episode we sele
t a problem size N at random(from a predetermined range) and generate a random DARP instan
e of that size, i.e., we form a symmetri
Eu
lidean distan
e matrix by generating random points in the plane inside the square bounded by the points(0,0), (0,100), (100,100) and (100,0). We set the \terminal site" to point (50,50) and the initial tour to arandomly generated feasible tour. We then
ondu
t a modi�ed �rst-improvement 2-opt lo
al sear
h using thenegated
urrent value fun
tion, �Vk, as the
ost fun
tion. The modi�
ation is that termination is
ontrolledby a nonnegative parameter � as follows: the sear
h terminates at a tour s if there is no s0 2 A(s) su
h thatVk(s0) > Vk(s)+ �. In other words, a step is taken only if it produ
es an improvement of at least � a

ordingto the
urrent value fun
tion. The episode returns a �nal tour sf . We next run one unmodi�ed 2-opt lo
alsear
h, this time using the standard DARP
ost fun
tion
 (tour length), from sf to
ompute 2-opt(sf).We then apply a bat
h version of undis
ounted TD(�) to the saved sear
h traje
tory using the followingimmediate rewards: �� for ea
h transition, and �
(2-opt(sf))=SteinN as a terminal reward, where SteinNis the estimated optimal tour for size N as
al
ulated theoreti
ally by Stein in [9℄.We
an now use the learned value fun
tion V in the performan
e phase, whi
h
onsists of applying tonew instan
es the modi�ed �rst-improvement 2-opt lo
al sear
h with
ost fun
tion �V , followed by a 2-optappli
ation to the resulting tour. The results des
ribed here were obtained using a simple linear approximatorwith a bias weight and three features: normalized
ost; normalized neighborhood size; and a third featurewe
all proximity, whi
h re
e
ts the positioning of the N=4 least expensive pairs of sites in a DARP tour.Comparisons among algorithms were done at �ve representative sizes, N = 20, 30, 40, 50, and 60. For thelearning phase, we
ondu
ted approximately 3,000 learning episodes, ea
h one using a randomly generatedinstan
e of a size sele
ted randomly between 20 and 60 in
lusive. The result of the learning phase was areasonably stable value fun
tion V . Table 5
ompares the tour quality found by six di�erent lo
al sear
halgorithms. For the algorithms using learned value fun
tions, the results are for the performan
e phase afterlearning using the algorithm listed. Table entries are the per
ent by whi
h tour length ex
eeded SteinN forinstan
e size N , averaged over 100 instan
es of ea
h representative size. Thus, 2-opt ex
eeded Stein20 = 645on the 100 instan
e sample set by an average of 42%. The last row in the table gives the results of usingthe �ve di�erent value fun
tions VN , for the
orresponding N . Results for TD(�) appeared to be best with� = :8. The learning-enhan
ed algorithms do well against 2-opt when running time is ignored, and indeedTD(.8), � = 0, is about 35% per
ent better (a

ording to this measure) by size 60. Note that 3-opt
learlyprodu
es the best tours, and a non-zero � for TD(.8) de
reases tour quality, as expe
ted sin
e it
ausesshorter sear
h traje
tories.Table 5: Comparison of Six Algorithms at Sizes N = 20, 30, 40, 50, 60. Entries are per
entage above SteinNaveraged over 100 random instan
es of size N .Algorithm N=20 N=30 N=40 N=50 N=602-opt 42 47 53 56 603-opt 8 8 11 10 10TD(1) 28 31 34 39 40TD(.8) � = 0 27 30 35 37 39TD(.8) � = :01=N 29 35 37 41 44TD(.8) � = 0, VN 29 30 32 36 40The algorithm TD(.8) � = :01=N ran between 2 and 3 times longer than traditional 2-opt on problem

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 41instan
es in the range N=20-60; TD(.8) � = 0 ran 3 to 7 times slower. When performan
e is equalizedfor time, both algorithms still outperform traditional 2-opt, and by size N=60 these algorithms are 30-40% better. Thus a methodology that
onstru
ts a learned value fun
tion involving se
ondary problem
hara
teristi
s, and uses the value fun
tiona as a generalized
ost fun
tion for lo
al sear
h,
an signi�
antlyenhan
e lo
al sear
h performan
e for
ombinatorial optimization problems.Other DARP Case StudiesWe also investigated two other learning-based enhan
ements to
ombinatorial optimization algorithms, againusing DARP as our test problem. We
onsidered the rollout method [13, 12, 10℄, and we used it to extenda very e�e
tive
onstru
tive DARP algorithm developed by Kubo and Kasugai [14℄. Although our rolloutextension is extremely long-running, it signi�
antly outperforms the best algorithm reported in [14℄. Indeedeven a drasti
ally trun
ated rollout algorithm outperforms the Kubo-Kasugai algorithm at small problemsizes.Finally we
onsidered a variation of the STAGE algorithm [1, 2℄
alled the Expe
ted ImprovementAlgorithm, whi
h uses the same
ontrol stru
ture as STAGE, but whi
h learns a di�erent hill-
limbingfun
tion|one that seeks to maximize the expe
ted improvement over the best-so-far solution, rather thanjust the expe
ted value of hill-
limbing. Our results here are preliminary and in
on
lusive, but we believethat this approa
h shows promise as yet another learning-based te
hnique for
ombinatorial optimization.This resear
h was supported by a grant from the Air For
e OÆ
e of S
ienti�
 Resear
h, Bolling AFB(AFOSR F49620-96-1-0254). Referen
es[1℄ J.A. Boyan, and A.W. Moore (1997). Using Predi
tion to Improve Combinatorial Optimization Sear
h,Pro
eedings of AI-STATS-97.[2℄ J.A. Boyan (1998). Learning Evaluation Fun
tions for Global Optimization. Ph.D. Thesis, Carnegie-Mellon University.[3℄ P. Healy and R. Moll (1995). A New Extension to Lo
al Sear
h Applied to the Dial-A-Ride Problem.EJOR, 8: 83-104.[4℄ P.Healy (1991). Sa
ri�
ing: An Augmentation of Lo
al Sear
h. Ph.D. thesis, University of Massa
husetts,Amherst.[5℄ W. Zhang, and T.G. Dietteri
h (1995). A Reinfor
ement Learning Approa
h to Job-Shop S
heduling,Pro
eedings of the 14th IJCAI, pp. 1114-1120. Morgan Kaufmann, San Fran
is
o.[6℄ R. Moll, A.G. Barto, T.J. Perkins, R. S. Sutton (1998). Learning Instan
e-Independent Value Fun
tionsto Enhan
e Lo
al Sear
h, Pro
eedings of NIPS-98. Denver.[7℄ S.Lin, and B.W. Kernigham and (1973). An EÆ
ient Heuristi
 for the Traveling-Salesmen Proglem. OR,21: 498-516. 291-307.[8℄ Psaraftis, H. N. (1983). K-inter
hange Pro
edures for Lo
al Sear
h in a Pre
eden
e-Constrained RoutingProblem.EJOR, 13:391{402.[9℄ Stein, D. M. (1978). An Asymptoti
 Probabilisti
 Analysis of a Routing Problem. Math.OperationsRes. J., 3: 89{101.[10℄ Tesauro, G., and Galperin, G. R. (1996). On-line Poli
y Improvement using Monte-Carlo Sear
h. InAdvan
es in Neural Information Pro
essing: Pro
eedings of the Ninth Conferen
e. MIT Press.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 42[11℄ Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-Dynami
 Programming. Athena S
ienti�
, Belmont,MA.[12℄ Bertsekas, D. P. (1997). Di�erential Training of Rollout Poli
ies. In Pro
. of the 35th Allerton Conferen
eon Communi
ation, Control, and Computing. Allerton Park, Ill.[13℄ Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C. (1997). Rollout Algorithms for Combinatorial Optimiza-tion. Journal of Heuristi
s.[14℄ Kubo, M. and Kasugai, H. (1990). Heuristi
 Algorithms for the Single Vehi
le Dial-A-Ride Problem.Journal of Operations Resear
h, 33:354{364.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 43Sto
hasti
 Optimization with Learning for Standard Cell Pla
ementLixin Su, Wray Buntine, and A. Ri
hard NewtonUniversity of California at Berkeley,Introdu
tionSto
hasti

ombinatorial optimization te
hniques, su
h as simulated annealing [2℄ and geneti
 algorithms [3℄,have be
ome in
reasingly important in design automation [4, 5℄ as the size of design problems have grownand the design obje
tives have be
ome in
reasingly
omplex. In addition, as we move towards deep-sub-mi
ron te
hnologies, the
ost fun
tion must often evolve over time or handle a variety of tradeo�s betweenarea, power, and timing, for example. Design te
hnologists
an often ta
kle simpli�ed versions of some ofthese problems, where the obje
tive
an be stated in terms of a small number of well-de�ned variables, usingdeterministi
 algorithms. Su
h algorithms may produ
e as good or even better results than the sto
hasti
approa
hes in a shorter period of time. Unfortunately, these algorithms run into a variety of diÆ
ultiesas the problems s
ale up and the obje
tive fun
tions begin to
apture the real
onstraints imposed on thedesign, su
h as
omplex timing, power dissipation, or test requirements. Sto
hasti
 algorithms are naturallysuited to these larger and more
omplex problems sin
e they are very general, making random perturbationsto designs and, in a
ontrolled way, letting a
ost fun
tion determine whether to keep the resulting
hange.However, sto
hasti
 algorithms are often slow sin
e a large number of random design perturbations arerequired to a
hieve an a

eptable result. They have no built-in intelligen
e and no ability to adapt theirperforman
e in a parti
ular problem domain. The goal of this resear
h was to determine whether statisti
allearning te
hniques
an improve the run-time performan
e of sto
hasti
 optimization for a parti
ular solutionquality, and in [1, 14℄ we demonstrated that for the problems we
onsidered, the adaptive approa
h o�ers asigni�
ant improvement.In our previous work presented in [1℄, we used a one-time, regression-based approa
h to train the sto
hasti
algorithm. We presented results for simulated annealing as representative sto
hasti
 optimization approa
h.The standard-
ell-based layout pla
ement problem was sele
ted to evaluate the utility of su
h a learning-based approa
h, sin
e it is a very well explored problem using both deterministi
 [6, 7, 8, 9, 10℄ as well as\manually trained" sto
hasti
 approa
hes [11, 12, 13℄. In our
urrent work, we extended our approa
h toin
remental learning and we reported detailed results for a regression-based empiri
al, in
remental approa
hto learning in [14℄.Sto
hasti
 pla
ement algorithms have evolved signi�
antly sin
e their initial appli
ation in the EDAarea over �fteen years ago [2℄. Over that period, the qualities of results they
an produ
e have improvedsigni�
antly. For example, in the development of TimberWolf system [11, 12, 13℄, whi
h is a general-purposepla
ement and routing pa
kage based on simulated annealing, many te
hniques have been tried to speedup the algorithm. They in
lude redu
ing the
omputation time of ea
h move, early reje
tion of bad moves,the use of eÆ
ient and adaptive
ooling s
hedules
ombined with windowed sampling, and hierar
hi
al or
lustered annealing. In many ways, these variations and improvements
an be viewed as \manually learned"approa
hes, based on the appli
ation of
onsiderable experimental as well as theoreti
al work taking pla
eover a long period of time. Commer
ial developments and other university-based work have also shownsigni�
ant improvements over the early work in this area. In our work, we explore another opportunityfor improving the utility of a sto
hasti
 algorithm through automati
 learning of the relative importan
e ofvarious
riteria in the optimization strategy. We learn from previous annealing runs to distinguish potentiallygood moves from bad ones. The good ones will be sele
ted with a higher probability to expand the sear
h.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 44Te
hni
al Ba
kground and Approa
hesWe assume that the readers are already familiar with the simulated annealing algorithm. In the algorithm,any perturbation of the
urrent solution is
alled a move. A move
an be either a

epted or reje
ted dependingon the Boltzmann test. In Conventional Simulated Annealing (CSA), proposing of a move is totally random.The primary goal of standard
ell pla
ement problem is to �nd positions on the
hip for all the
ells in anet-list so that the estimated total wire length is minimized. A net-list is the result of logi
 synthesis in theASIC design
ow. In the
ase of standard
ell design, it represents a set of standard
ells and their logi
al
onne
tions (nets). As a
onstraint, the
ells
annot overlap with ea
h other in the �nal pla
ement. For thesake of simpli
ity, we also assume all the
ells are of the same size in our experiments.In most pla
ement algorithms, the
ost fun
tion, whi
h is the estimate of the �nal total wire length, iseither linear or quadrati
. As a
ommon pra
ti
e with simulated annealing, we de�ne the
ost fun
tion asthe sum of half perimeters of bounding boxes of all the nets. The move set is de�ned as the pair-wise swaps.We de�ned a feature ve
tor of a swap as a real ve
tor of seven
omponents. Our learning ma
hine isa linear fun
tion of the feature ve
tor. The parameters in the linear fun
tion were determined by linearregression, either in a bat
h-mode [1℄ or in
rementally [14℄.The learned regression model was then used as an evaluation fun
tion judging the \goodness" of a swap.More spe
i�
ally, a randomly
hosen set, whi
h was a sub-set of the move set was formed �rst, and thenthe \best" move sele
ted from the
hosen set using the evaluation fun
tion was given to the Boltzmanntest. The simulated annealing with this modi�
ation is
alled Trained Simulated Annealing (TSA). If theevaluation fun
tion is updated from run to run, it is
alled In
rementally Trained Simulated Annealing(ITSA); otherwise if the evaluation fun
tion is trained in a bat
h-mode, it is
alled Bat
h-Mode SimulatedAnnealing (BTSA). Experimental ResultsWe did our pla
ement experiments on a set of
ir
uits taken from MCNC91
ombinational ben
hmark set[15℄, NCSU ben
hmark set [16℄ and ISCA89 sequential ben
hmarks [15℄. The net-lists were synthesized usingSIS. For
onvenien
e, the MSU standard-
ell library was used for generating the
ell layouts.Bat
h-Mode LearningThe test set was divided into two groups, Group 1 was used for the
onstru
tion of regression models; whileGroup 2 was used for the blind test.As an initial test of the approa
h and to provide a
ontrol for later
omparisons, we
onstru
ted individualmodels for ea
h of the
ir
uits. The learning data were obtained by running CSA 5,000 times for ea
h ofthe
ir
uits. Ea
h individual model was applied to the
ir
uit on whi
h it was developed by running TSA tosee if the individual model is robust for the entire (mu
h larger than the part ea
h model was learned from)solution spa
e.In the se
ond phase of the experiments, we used simple averaging of the parameters a
ross the test
ir
uitsto build the overall general model. While there are more e�e
tive statisti
al approa
hes to the
ombinationof the individual models, simple averaging
an be seen as a simple and sub-optimal approa
h. The general(averaged) model was then applied to all the
ir
uits in Group 1 by running TSA in order to see if thegeneral model works as well as the
ir
uit's own individual model. Our experiment showed that TSA withboth the individual and the general model works equally well. For the same number of moves proposed tothe Boltzmann test, the annealing quality returned by TSA is at least 15-43% better than that returned byCSA.Next we tested the generality of the general model in a more signi�
ant way. The general model was

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 45applied to
ir
uits in Group 2, none of whi
h were used in the training of the model. For the same numberof tested moves, TSA with the general trained model improved the annealing quality by 7- 41%
ompared toCSA. Noti
e that quite a few
ir
uits in Group 2 are 1-3 times larger than the largest
ir
uit in the Group1 training set.To see the CPU time versus annealing quality trade o�, we
hanged the number of swaps proposed pertemperature to
ontrol the run time. Despite the overhead introdu
ed in TSA, for the same amount of CPUtime, the annealing quality was improved from 12 to 22% for all the Group 2
ir
uits using TSA in
ontrastto using CSA. For Group 1
ir
uits, the best per
entage improvement of �nal quality ranged from 14% to28%.Over the years, resear
hers have found that a windowing approa
h, where the maximum distan
e between
ells in the
andidate move is de
reased as temperature de
reases, tends to improve the overall run-timeperforman
e of the annealing at little or no
ost in the quality of the �nal result. Our experiment alsodis
overed that in the
ase of TSA, the average
ell distan
e of the proposed swap automati
ally de
reasedwith the temperature; in
ontrast, in the
ase of CSA the average
ell distan
e did not show any
hange.Hen
e the general trained model, derived purely from the training runs on the test examples and withoutany a priori hints, determined that a windowing approa
h would a
tually lead to an optimal utility resultand even predi
ted the optimal window size. Our approa
h indeed has automati
ally learned somethingnontrivial!In
remental LearningFirst, we experimented with learning from run to run for a parti
ular
ir
uit. Sin
e in
remental learningmust start with an initial model, three di�erent initial evaluation fun
tions were investigated: non-informative(NI), bat
h learned (BL), and weighted non-informative (WNI).In the
ase of using the NI initial model, ITSA is very e�e
tive in the sense that it a
hieved 10-27%redu
tion (
ompared to CSA) in the average �nal
ost fun
tion after a single new data point was used toupdate the initial evaluation fun
tion. Information added to the evaluation fun
tion in the later runs didnot improve the annealing quality. But if we put less weight on the initial model, namely in the
ase ofusing WNI initial model, the per
entage improvement at the end of the 3rd in
remental annealing run wasin
reased by up to 9.3%
ompared to that a
hieved in the former
ase. Similarly, after the 3rd in
rementallearning run, the annealing quality
onverged to an almost maximum improvement. With the BL initialmodel, the redu
tion
ompared to CSA in average �nal
ost fun
tion at the end of the se
ond run wasalso signi�
ant i.e. 2.69-33.45%, and even more, as the in
remental learning went on, the redu
tion almostapproa
hed the value a
hieved by BTSA.Next, we experimented with learning from
ir
uit to
ir
uit. It was shown that the model learned from one
ir
uit
an be safely applied to another
ir
uit, and the improvement in annealing quality at the end of these
ond in
remental learning run was even 1-5% better than its best
ounterpart when a model in
rementallylearned from the same
ir
uit was used. It was also observed that initial evaluation fun
tions learned frommany other
ir
uits outperformed the ones learned from only one other
ir
uit by up to 8%. Hen
e the morehybridized the model, the better the annealing quality will be for new
ir
uits. However, learning order didmake small di�eren
e too. Con
lusions and Future WorkWe demonstrated that a sto
hasti
 algorithm, in this
ase simulated annealing
an signi�
antly improve thequality-of-results on a mainstream EDA appli
ation through e�e
tive in
remental learning.In the
ase of bat
h-mode learning, the annealing quality improvement was 15-43% for the set of ex-amples used in training and 7-21% when the trained algorithm was applied to new examples. With thesame amount of CPU time, the trained algorithm improved the annealing quality by up to 28% for some

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 46ben
hmark
ir
uits we tested. In addition, the use of the response model su

essfully predi
ted the e�e
tof the windowed sampling te
hnique and derived the informally a

epted advantages of windowing from thetest set automati
ally.In the
ase of in
remental learning, for a parti
ular
ir
uit, even at the end of the 2nd learning run, theannealing quality was improved by 10%-27%
ompared to
onventional simulated annealing in the examplespresented. This result was further in
reased by up to 10% by putting less emphasis on the initial valueof the evaluation fun
tion. In
ontrast to bat
h-mode learning, where a large data set must be obtainedfor the training of a regression model from expensive learning runs, the non-informative initial model didnot
ost any e�ort and resulted in almost identi
al improvement. In the
ase of learning from
ir
uit to
ir
uit, our experiments showed that information learned from one
ir
uit
ould be applied safely to another,yielding a slightly (up to 5%) better result
ompared to the best
ase of using a model learned from the same
ir
uit. Moreover, learning from more
ir
uits yielded even better results. However, the learning order didmake a di�eren
e in terms of annealing quality. Overall, we believe that this work has demonstrated thata sto
hasti
 optimization algorithm, applied to at least some EDA problems,
an signi�
antly improve itsperforman
e by learning from its optimization history automati
ally. We believe the appli
ation of general-purpose sto
hasti
 algorithms, with built-in general-purpose approa
hes to learning,
ould eventually formthe basis of a general and adaptive approa
h to the solution of a variety of VLSI CAD problems.Referen
es[1℄ L. Su, W. Buntine, A. R. Newton, and B. S. Peters. Learning as Applied to Sto
hasti
 Optimizationfor Standard Cell Pla
ement. In Pro
eedings of the IEEE International Conferen
e on Computer Design:VLSI in Computers & Pro
essors, pages 622{627. 1998.[2℄ S. Kirkpatri
k, C. D. Gelatt, and Jr., M. P. Ve

hi. Optimization by simulated annealing. S
ien
e,220:671{880, 1983. 1993.[3℄ David Edward Goldberg. Geneti
 algorithms in sear
h. Addison-Wesley, 1989.[4℄ D. F. Wong, H. W. Leong and C. L. Liu. Simulated annealing for VLSI design. Kluwer A
ademi
Publishers, 1988.[5℄ Pinaki Mazumder, Elizabeth M. Rudni
k. Geneti
 algorithms for VLSI design, layout & test automation.Prenti
e Hall, 1999.[6℄ M. Hannan, P. K. Wol� and B. Agule. Some experimental results on pla
ement te
hnique. In Pro
. 12thDesign Automation Conferen
e, pages 214{244. 1976.[7℄ N. Quinn and M. Breuer. A for
e dire
ted
omponent pla
ement pro
edure for printed
ir
uit boards.IEEE Trans. CAS, CAS-26:377{388, 1979.[8℄ R-S. Tsay, E. S. Kuh, and C.-P. Hsu. PROUD: A fast sea-of-gates pla
ement algorithm. In ACM/IEEEDesign Automation Conferen
e, 1988.[9℄ J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antrei
h. GORDIAN: VLSI pla
ement by quadrati
programming and sli
ing optimization. IEEE Trans. CAD, CAD-10:356{365, 1991.[10℄ Hans Eisenmann and Frank M. Johannes. Generi
 global pla
ement and
oorplanning. In IEEE/ACMInternational Conferen
e on Computer Aided Design, 1998.[11℄ Carl Se
hen and Alberto Sangiovanni-Vin
entelli. The TimberWolf pla
ement and routing pa
kage.IEEE Journal of Solid-State Cir
uits, SC-20(2), 1985.[12℄ Wern-Jieh Sun and Carl Se
hen. EÆ
ient and e�e
tive pla
ement for very large
ir
uits. IEEE Trans-a
tions on Computer-Aided Design of Integrated Cir
uits and Systems, 14(3), 1995.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 47[13℄ William Swartz, et al. Timing driven pla
ement for large standard
ell
ir
uits. In Pro
eedings of the32nd Design Automation Conferen
e, 211{215, 1995.[14℄ Lixin Su, Wray Buntine, and A. Ri
hard Newton. Sto
hasti
 Optimization with In
remental Learningfor Standard Cell Pla
ement. Submitted to Design Automation Conferen
e, 2000.[15℄ Ben
hmark
ir
uits released with SIS-1.2. Department of EECS, University of California at Berkeley.[16℄ http://www.
bl.n
su.edu/ben
hmarks.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 48Colle
tive Intelligen
e for Optimization(Summary)David H. Wolpert and Kagan TumerNASA Ames Resear
h Center,A \COlle
tive INtelligen
e" (COIN) is a distributed set of intera
ting reinfor
ement learning (RL) algo-rithms designed so that their
olle
tive behavior optimizes a global utility fun
tion. One
an
ast a COINas a multi agent system (MAS) where:i) there is little to no
entralized
ommuni
ation or
ontrol;ii) ea
h agent runs a `greedy' Reinfor
ement Learning (RL) algorithm, in an attempt to in
rease its ownutility;iii) there is a well-spe
i�ed global obje
tive fun
tion that rates the full system.Rather than use a
onventional modeling approa
h (e.g., model the system dynami
s, and hand-tuneagents to
ooperate), we aim to solve the COIN design problem impli
itly, via the \adaptive"
hara
ter of the RL algorithms of ea
h of the agents. This approa
h introdu
es an entirely new, profound design problem:Assuming the RL algorithms are able to a
hieve high rewards, what reward fun
tions for the individualagents will, when pursued by those agents, result in high world utility? In other words, what reward fun
tions will best ensure that we do not have phenomena like the tragedy of the
ommons , Braess's paradox, orthe liquidity trap?An example of a naturally o

urring COIN is a
apitalist e
onomy. One
an de
lare `world utility' to bea time average of the Gross Domesti
 Produ
t (GDP) of the
ountry in question. The reward fun
tions forthe human agents
an then be the a
hievements of their personal goals (usually involving personal wealth tosome degree). To a
hieve high world utility in any COIN it is ne
essary to avoid phenomena like the Tragedyof the Commons (TOC), in whi
h individual avari
e works to lower global utility. One way to avoid su
hphenomena is by modifying the agents' utility fun
tions. In the
ontext of
apitalist e
onomies, this
an bedone via punitive legislation. A real world example of an attempt to make just su
h a modi�
ation was the
reation of anti-trust regulations designed to prevent monopolisti
 pra
ti
es.In designing a COIN we have more freedom than anti-trust regulators though, in that there is no base-line\organi
" lo
al utility fun
tion over whi
h we must superimpose legislation-like in
entives. Rather, the entire\psy
hology" of the individual agents is at our disposal, when designing a COIN. This obviates the needin designed COINs for honesty-eli
itation (`in
entive
ompatible') me
hanisms, like au
tions, whi
h form a
entral
omponent of
omputational e
onomi
s.We have explored a mathemati
al framework for COIN design, and investigated the (su

essful) appli
a-tion of that framework in several domains, e.g., optimizing the pa
ket throughput of a tele
ommuni
ationsnetwork [10℄. Here we present a summary of a di�erent investigation of our COIN methodology involving avariant of Arthur's \El Farol" bar problem [1, 2, 4, 7, 8, 3℄, a problem whi
h �rst arose in e
onomi
s (see[11, 9℄ for details). In the bar problem, at ea
h time step ea
h agent independently predi
ts, based on itsprevious experien
e, whether a bar will be too
rowded to be \enjoyable" at that time step. The agent thenuses this predi
tion to de
ide whether attending the bar or not will maximize its lo
al utility. The globalobje
tive in this problem is to keep the bar as
lose to
apa
ity as possible. In this problem the \greedy"nature of the agents
an readily thwart the optimization of the world utility.In the problem we investigated, there are N agents, ea
h pi
king one of seven nights to attend a barthe following week, a pro
ess that is then repeated. In ea
h week, ea
h agent's pi
k is determined by itspredi
tions of the asso
iated rewards it would re
eive. Ea
h su
h predi
tion in turn is based solely upon therewards re
eived by the agent in those pre
eding weeks in whi
h it made that pi
k.The world utility is G(�) = PtRG(� ;t), where RG(� ;t) � P7k=1 �k(xk(�; t)), xk(�; t) is the total at-tendan
e on night k at week t, �k(y) � �ky exp (�y=
); and
 and the f�kg are real-valued parameters.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 49Intuitively, this G is the sum of the \world rewards" for ea
h night in ea
h week. Our
hoi
e of �k(:) meansthat when too few agents attend some night in some week, the bar su�ers from la
k of a
tivity and thereforethe world reward is low. Conversely, when there are too many agents the bar is over
rowded and the rewardis again low.Ea
h agent � has a 7-dimensional ve
tor representing its estimate of the reward it would re
eive forattending ea
h night of the week. At the end of ea
h week, the
omponent of this ve
tor
orresponding tothe night just attended is proportionally adjusted towards the a
tual reward just re
eived. At the beginningof the su

eeding week, to trade o� exploration and exploitation, � pi
ks the night to attend randomly usinga Boltzmann distribution with 7 energies �i(�) given by the
omponents of �'s estimated rewards ve
tor, andwith a temperature de
aying in time. This learning algorithm is similar to Claus and Boutilier's independentlearner algorithm [5℄.We
onsidered three agent reward fun
tions, using the same learning parameters (learning rate, Boltz-mann temperature, de
ay rates, et
.) for ea
h. The �rst reward fun
tion was
� = G 8�, i.e., agent �'sreward fun
tion equals RG. The other two reward fun
tions are: RUD;� � �d�(xd� (�; t))=xd� , RWL;�(� ;t) �RG �RG(CL�), where d� is the night pi
ked by �, and CL� is a fun
tion derived from COIN theory.The RUD reward is a \natural" reward fun
tion to use; ea
h night's total reward is uniformly dividedamong the agents attending that night. RG is the \team game" reward fun
tion that has been investigatedin the MAS
ommunity [6℄; every agent gets the world reward as its reward signal. RWL is the rewardfun
tion re
ommended by COIN theory.
0

2

4

6

8

10

12

14

16

0 250 500 750 1000

A
ve

ra
ge

 P
er

fo
rm

an
ce

Weeks

0
2
4
6
8

10
12
14
16

21 84 168 252 336 420

Av
er

ag
e

Pe
rfo

rm
an

ce

Number of Agents

WL
G

UD

Figure 9: Average world reward
onvergen
e and s
aling properties. In both plots the top
urve is RWL,middle is RG, and bottom is RUD .The left-hand �gure in Figure 9 graphs world reward value as a fun
tion of time, averaged over 50 runs,for all three reward fun
tions. The naive
hoi
e of RUD a
tually leads to deterioration of performan
ewith time. Performan
e with RG eventually
onverges to the global optimum. Systems using RWL also
onverged to optimal performan
e, but far faster (30 times as qui
kly). This slow
onvergen
e of systemsusing RG is a result of the reward signal being \diluted" by the large number of agents in the system. Theright-hand �gure in Figure 9 shows how performan
e at t = 2000 s
ales with N . Systems using RUD performpoorly regardless of N . Systems using RG perform well when N is low. As N in
reases however, it be
omesin
reasingly diÆ
ult for the agents to extra
t the information they need from RG.In
on
lusion, the COIN framework summarized in this arti
le addresses large distributed
omputa-tional optimization tasks from a novel perspe
tive, one that works mu
h better than the other systems weinvestigated.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 50Referen
es[1℄ W. B. Arthur. Complexity in e
onomi
 theory: Indu
tive reasoning and bounded rationality. TheAmeri
an E
onomi
 Review, 84(2):406{411, May 1994.[2℄ G. Caldarelli, M. Marsili, and Y. C. Zhang. A prototype model of sto
k ex
hange. Europhys. Letters,40:479{484, 1997.[3℄ A. Cavagna, Garrahan J. P., I. Giardina, and D. Sherrington. A thermal model for adaptive
ompetitionin a market. preprint
ond-mat/9903415 v.3, July 1999.[4℄ D. Challet and Y. C. Zhang. On the minority game: Analyti
al and numeri
al studies. Physi
a A,256:514, 1998.[5℄ C. Claus and C. Boutilier. The dynami
s of reinfor
ement learning
ooperative multiagent systems. InPro
eedings of the Fifteenth National Conferen
e on Arti�
ial Intelligen
e, pages 746{752, June 1998.[6℄ R. H. Crites and A. G. Barto. Improving elevator performan
e using reinfor
ement learning. In D. S.Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advan
es in Neural Information Pro
essing Systems- 8, pages 1017{1023. MIT Press, 1996.[7℄ M. A. R. de Cara, O. Pla, and F. Guinea. Competition, eÆ
ien
y and
olle
tive behavior in the \ElFarol" bar model. preprint
ond-mat/9811162 (to appear in European Physi
s Journal B), November1998.[8℄ W. A. Sethares and A. M. Bell. An adaptive solution to the El Farol problem. In Pro
eedings. of theThirty-Sixth Annual Allerton Conferen
e on Communi
ation, Control, and Computing, Allerton, IL, 1998.(Invited).[9℄ D. H. Wolpert and K. Tumer. An Introdu
tion to Colle
tive Intelligen
e. In J. M. Bradshaw, editor,Handbook of Agent te
hnology. AAAI Press/MIT Press, 1999. to appear.[10℄ D. H. Wolpert, K. Tumer, and J. Frank. Using
olle
tive intelligen
e to route internet traÆ
. InAdvan
es in Neural Information Pro
essing Systems - 11. MIT Press, 1999.[11℄ D. H. Wolpert, K. Wheeler, and K. Tumer. General prin
iples of learning-based multi-agent systems.In Pro
eedings of the Third International Conferen
e of Autonomous Agents, pages 77{83, 1999.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 51EÆ
ient Value Fun
tion Approximation Using Regression TreesXin Wang and Thomas G. Dietteri
hOregon State University,Value fun
tion approximation is
riti
al for the appli
ation of reinfor
ement learning in large state spa
es,su
h as those that arise in
ombinatorial optimization problems. The majority of su

essful appli
ations ofreinfor
ement learning have employed neural network fun
tion approximators [5, 3℄, but these are slow andoften require substantial parameter tuning and spe
ial training methods to obtain good performan
e. Forexample, to obtain su

essful results in resour
e-
onstrained s
heduling problems, Zhang and Dietteri
h[7℄ had to
arefully adjust learning rates, output representations, experien
e replay, and reverse-traje
toryTD(�) training. Table 6: Comparison of Value Fun
tion Approximation MethodsIrrelevant &Fun
tion Approximator Bias Speed S
aling Dis
ontinuities? Correlated Features?Neural Networks Low Slow Good Ok YesLinear Fun
tions High Fast Good No NoLo
al Linear Low Slow Poor Ok NoCMAC Medium Fast Poor Ok NoRegression Trees Low Fast Good Good YesOur goal is to develop a new family of fun
tion approximators that have low bias, high speed, goods
aling to high-dimensional input spa
es, and the ability to represent dis
ontinuous value fun
tions and tohandle irrelevant and
orrelated input features. Table 6 summarizes the advantages and disadvantages ofvarious existing fun
tion approximator families a

ording to these
riteria. As the table shows, we have
hosen to fo
us on regression trees, be
ause they show promise of doing well on all of these
riteria.Our regression trees are binary trees. Ea
h internal node
ontains a splitting plane that divides thefeature spa
e into two half-spa
es
orresponding the node's left and right
hild nodes. Ea
h leaf node in thetree
ontains a linear fun
tion de�ned over the feature spa
e. Given feature ve
tor x, its value is predi
tedby \dropping" it through the tree, obeying the splitting plane at ea
h internal node, and evaluating thelinear fun
tion at the leaf node.There are three key steps in any regression tree algorithm: (a)
hoosing the splitting planes at the internalnodes, (b) �tting the planes at the leaf nodes, and (
) halting tree growth.Choosing Splitting Planes. We try to put splitting planes where there are dis
ontinuities in the valuefun
tion. To avoid sear
hing the in�nite spa
e of splitting planes, we borrowed an idea from Hinton andRevow's [4℄ de
ision-tree algorithm in whi
h splitting planes are de�ned by taking the plane that lies mid-waybetween two training examples. They
onsidered all pairs of training examples belonging to di�erent
lasses,and evaluated ea
h of these
andidate planes (by one-step lookahead) to
hoose the best one.In reinfor
ement learning in deterministi
 (or nearly deterministi
) state spa
es, dis
ontinuities in thevalue fun
tion are found primarily between pairs of states (s1; s2) where s2
an be rea
hed in one step froms1. Our algorithm pro
eeds by randomly drawing a sample of 50 su
h pairs and
onstru
ting the plane thatis the perpendi
ular bise
tor of ea
h pair. Ea
h splitting plane is evaluated by one-step lookahead. Thetraining examples at the
urrent node are partitioned a

ording to the splitting plane, and the two resultingsets of points are �tted with linear surfa
es as des
ribed below. The split that gives the best overall �t is
hosen.Fitting Linear Fun
tions to the Leaf Nodes. In supervised learning, the usual pra
ti
e is to �nd

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 52the fun
tion V̂ that minimizes the squared error between the predi
ted and the a
tual values. We will
allthis the supervised error: E1 =Xs hV (s)� V̂ (s)i2 : (1)This method has been applied in reinfor
ement learning (e.g., [2℄), but even if V̂ is a good approximation toV , the a
tion re
ommended by V̂
an still be mu
h worse than the a
tion re
ommended by V . The problemis that unless the learning algorithm
an redu
e the supervised error to zero, V̂ will not be a solution to theBellman equation, and this is a requirement for produ
ing an optimal poli
y.To solve the Bellman equation, we
an try to minimize the Bellman error:E2 =Xs V̂ (s)�maxa Xs0 P (s0js; a)[R(s0js; a) + V̂ (s0)℄!2 : (2)This is the basis of TD(�) and related algorithms. However, if V̂
annot represent this solution exa
tly, thea
tion re
ommended by V̂ may not be optimal.Baird [1℄ suggested minimizing the Advantage Error, whi
h we
an write as follows. Let Q(s; a) be thereturn of performing a
tion a in state s:Q(s; a) =Xs0 P (s0js; a)[R(s0js; a) + V (s0)℄: (3)Let abest be the a
tion that has the highest Q value. Then the advantage of performing a
tion a in state sis de�ned as A(s; a) = Q(s; a)�Q(s; abest): (4)The advantages of all a
tions ex
ept abest are negative. We
an then de�ne the squared advantage error tobe E3 =Xs Xa �hQ̂(s; a)� Q̂(s; abest)i+�2 (5)where the notation [x℄+ is 0 if x is negative, and x if x is positive. Hen
e, if the predi
ted advantage of a ispositive, then we have an error (sin
e all advantages should be negative or zero), and we square that error.To train the leaves of the regression tree, we
ombine all three error terms to give a weighted
ompositeerror E = !1E1 + !2E2 + !3E3: (6)Here, the !i � 0
ontrol the relative importan
e of the supervised, Bellman, and Advantage error terms.Stopping Rule. If the improvement in the
omposite error between a parent node and its
hildren isless than 5%, then tree growth is halted.We tested our regression tree algorithm on the ART-1 set of resour
e-
onstrained s
heduling problemsdeveloped by Wei Zhang [8℄. For ea
h of the 25 training problems, we applied a simple greedy heuristi
developed by Zhang to guide a beam sear
h (beam width 20) to �nd a single \best" path from the startingstate to a feasible solution. We then grew a regression tree from these \best paths" (and all one-stepdepartures from the best path) using the algorithm outlined above. The values of the !'s were
hosen tooptimize performan
e on 25 validation problems. Finally, the learned regression tree was applied to solve 50test problems and
ompared to the solutions found by Wei Zhang's neural network value fun
tion. Figure 10summarizes the results.The regression tree gives better results for 23 problems, gives the same result for 3, and gives worseresults for 24. A 2-sided t test
annot reje
t the null hypothesis that the two fun
tion approximators aregiving the same performan
e (p = :84).

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 53

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

T
es

t S
et

 R
D

F
(R

eg
re

ss
io

n
T

re
e

V
al

ue
 F

un
ct

io
n)

Test Set RDF (Neural Network Value Function)Figure 10: Regression tree (1 best path and using RDF) vs. Neural net on test set; points below the line areproblems where the regression tree gave a better solution than the neural network.Table 7: Importan
e of Individual Terms in the Composite Obje
tive Fun
tionRegression tree vs. Neural netSupervised Bellman Advantage win tie loseyes yes yes 23 3 24no yes yes 1 0 49yes no yes 14 3 34yes yes no 11 1 38yes no no 4 0 46no yes no 3 0 47no no yes 6 0 44Table 7 shows that ea
h of the three terms is essential in order for the regression tree to mat
h theperforman
e of the neural network.The �nal question we address is training time. A

ording to our most re
ent measurements, the trainingtime for the regression trees on the ART-1 problem set is about a fa
tor of 10 faster than for the neuralnetwork. On more diÆ
ult problem sets, we expe
t the di�eren
es to be more dramati
.The results of this initial study are promising. However, before we
an apply regression trees to large
ombinatorial optimization problems, we need to address three major problems. First, our algorithm re-quires supervised values for the states in the training data. For ART-1, we have a good heuristi
, but forother problems, a better method is needed for �nding supervised values. Se
ond, our algorithm is a bat
halgorithm. We need some way to interleave exploration with fun
tion �tting (e.g., by making the methodmore in
remental). Finally, our
urrent splitting rule assumes that all features are equally relevant (andun
orrelated). We need to improve the rule to perform some kind of feature sele
tion during splitting sothat irrelevant and
orrelated features
an be dete
ted and ignored.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 54A
knowledgementsThe authors gratefully a
knowledge the support of NSF Grant 9626584-IRI and AFOSR Grant F49620-98-1-0375. Referen
es[1℄ Baird, L. C. 1993. Advantage updating. WL-TR-93-1146, Wright-Patterson Air For
e Base.[2℄ Boyan, J. A. and Moore, A. W. 1995. Generalization in reinfor
ement learning: Safely approximatingthe value fun
tion. In Tesauro, G., Touretzky, D. S., Leen, T. K. (Eds), Advan
es in Neural InformationPro
essing Systems, Vol 7, 369{376. The MIT Press, Cambridge.[3℄ Crites, R. H. Barto, A. G. 1996. Improving elevator performan
e using reinfor
ement learning. InTouretzky et al. [6℄, 1017{1023.[4℄ Hinton, G. E. Revow, M. 1996. Using pairs of data-points to de�ne splits for de
ision trees. In Touretzkyet al. [6℄, 507{513.[5℄ Tesauro, G. 1992. Pra
ti
al issues in temporal di�eren
e learning. Ma
hine Learning, 8, 257{277.[6℄ Touretzky, D. S., Mozer, M. C., Hasselmo, M. E. (Eds). 1996. Advan
es in Neural Information Pro
essingSystems, Vol 8. The MIT Press, Cambridge.[7℄ Zhang, W. Dietteri
h, T. G. 1995. A reinfor
ement learning approa
h to job-shop s
heduling. In 1995International Joint Conferen
e on Arti�
ial Intelligen
e, 1114{1120. Morgan Kaufmann, San Fran
is
o,CA.[8℄ Zhang, W. 1996. Reinfor
ement Learning for Job-Shop S
heduling. Ph.D. thesis, Oregon State University,Department of Computer S
ien
e.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 55Numeri
al Methods for Very High-Dimension Ve
tor Spa
esT. Dean, K.E. Kim, and S. HazlehurstBrown University,There is a large
lass of numeri
al optimization problems that
an be des
ribed in terms of equationsinvolving ve
tors and matri
es. One example that we use throughout this short overview is the problem of�nding an optimal or near-optimal poli
y for a Markov de
ision problem (MDP). MDPs
onstitute a sto
has-ti
 generalization of the deterministi
 propositional planning problems studied in arti�
ial intelligen
e [3℄.The obje
tive fun
tions and solution methods for MDPs are often
hara
terized in terms of matrix-ve
torequations [5℄.Consider
al
ulating v de�ned as v = Au, in whi
h A is an n � n matrix and u and v are ve
tors ofdimension n. The matrix A might be the adja
en
y matrix for a graph representing a database relation or thestate-transition matrix for a planning problem and u might be the spe
i�
ation of verti
es
orresponding toa query or the initial-state distribution. Often enough, we are interested in solving problems where n = kmfor some m and k � 2. Of
ourse, if m is large, we probably
an't represent v = Au expli
itly by allo
atingspa
e for ea
h entry of A, u, and v. But what if A, u, and v are \symmetri
al" or \regular" in some sense?For example, sparse matrix representations exploit
ertain types of symmetries for problems in whi
h O(n)is a

eptable (and hen
e m is relatively small) but O(n2) is not. In this work, we are interested in a di�erent
lass of regularities for problems in whi
h m is large and O(n) time or spa
e is out of the question.In many of the optimization problems en
ountered in arti�
ial intelligen
e, in
luding the problem of�nding optimal poli
ies for MDPs, the matri
es and ve
tors
an be quite large. In parti
ular, it is oftenthe
ase that the number of indi
es (and hen
e the size of a matrix, say, if represented as simple table) isexponential in the size of the problem des
ription.For example, in the
ase of fa
tored MDPs [1℄, if we were to allo
ate spa
e for ea
h entry, the sizes of thestate-transition matrix and the reward ve
tor would be exponential in the number of state variables used todes
ribe the domain. In many
ases, however, there are representations for these large matri
es and ve
torsthat allow us to en
ode these obje
ts in a
ompa
t and tra
table form. In the following, we des
ribe onesu
h representation based on trees that works well for MDPs.
1.0

0.0

1.00.1

1.0 0.0 1.0 0.0

Rt

Pr Rt+1 Rt()

U t

Pr U t+1 U t()

W t

Rt

U t

Pr W t+1 Rt,U t,W t()R R

U U

W W

HC

WC WC

HC

t t 1+
1.0 0.9

HCt

Pr HCt+1 HCt()

1.0 0.0

WCt

Pr WCt+1 WCt()

Figure 11: Compa
t representation for a robot a
tionFigure 11 depi
ts a
ompa
t representation for the state-transition probability distribution for an a
tionin a simple robot domain modeled as an MDP [2℄. We de�ne R;U;W;HC;WC as (boolean) index (or state)variables representing, respe
tively, the weather outside being rainy, the robot having an umbrella, the robotbeing wet, the robot holding
o�ee, and the robot's boss wanting
o�ee. The network shown on the left inFigure 11 indi
ates the fun
tional dependen
ies involving these variables. The tree stru
tures on the rightindi
ate the transition probability distributions for ea
h index variable given its parents as determined bythe network on the left.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 56
WC

HC W

2 4 7 8

1 0

1 10 0
v =

0
0

0
0

0
,

,
,

,
[

]
0

0
0

0
1

,
,

,
,

[
]

0
0

0
1

0
,

,
,

,
[

]

0
0

1
0

1
,

,
,

,
[

]

1
1

1
1

1
,

,
,

,
[

]

4
0 1 2 i 31

R
U
W

HC
WC

……

……Figure 12: A ve
tor
ompa
tly represented as a tree
0 0 0 0 0, , , ,[]

0 0 0 1 0, , , ,[]

0
0

0
0

0
,

,
,

,
[

]

1
1

0
0

0
,

,
,

,
[

]

1
1

1
1

1
,

,
,

,
[

]

0
0

0
0

1
,

,
,

,
[

]
0

0
0

1
0

,
,

,
,

[
]

0

2
0 0 0 0 1, , , ,[] 1

1 1 1 0 0, , , ,[] i

1 1 1 1 1, , , ,[] 31

0

1 2 j 31

aij Pr Rt+1 Rt()=

Pr W t+1 Rt,U t,W t()×
Pr U t+1 U t()×

Pr HCt+1 HCt()×

R
U

W

WC
HC

Pr WCt+1 WCt()×

……

… …

…
……

…

Figure 13: Computing an entry in a state-transition matrixLet Z = [R;U;W;HC;WC℄ denote a ve
tor z 2 f0;1g5. z determines the index into the ve
torsand matri
es of the original problem. Two indi
es are said to be equivalent with respe
t to value if their
orresponding entries are the same. This equivalen
e relation indu
es a partition on the set of all indi
es.Ideally, we would only want to allo
ate an amount of spa
e polynomial in the number of index variablesfor ea
h blo
k in this partition | this amount of spa
e would have to suÆ
e for both the value of theentry (
ommon to all of the entries) and for the representation of the blo
k. Fortunately, in some
ases,we
an represent large blo
ks of indi
es quite
ompa
tly, e.g., we might interpret the formula WC ^HC asrepresenting the set of all indi
es in whi
h WC is assigned 1 and HC is assigned 0. Note that in Figure 12whi
h depi
ts the reward ve
tor (fun
tion) for the robot problem as a tree, we have a
hieved e
onomy ofrepresentation by exploiting independen
e involving the index variables, e.g., if WC is 1, then the entry ofthe ve
tor is independent of the value of W .We
an represent large matri
es in a similar manner. The probability of ending up in one state havingstarted from another is determined as the produ
t of the values found in the transition probability trees.Figure 13 shows the formula for a parti
ular entry in the state-transition probability matrix. Note thatalthough the dimension of the ve
tors and matri
es is exponential in the number of index variables, retrievinga parti
ular entry
an be done in time polynomial in the size of the representation.On
e we
an a
tually write down the equations for the underlying optimization problem in terms ofmatri
es and ve
tors, there remains the problem of
arrying out the basi
 operations, e.g., transposingmatri
es,
omputing ve
tor-ve
tor and matrix-ve
tor produ
ts, and raising a matrix to a power, that arerequired to implement various numeri
al methods. In [4℄, we des
ribe pro
edures for
arrying out the basi
operations on ve
tors and matri
es represented in terms of trees; in the following, we provide an example to

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 57
WC

R

3 2

0
b

a

WCWC

-1 1 5 1

W

WCWC

-1 1 5 1WC

R

3 2

0 W

WCWC

5 11R

2 1

W

WCWC

1R

2 1

1R

8 7

W

…

Figure 14: Adding two ve
tors represented as treesillustrate the basi
 idea.Generalizing on the work of Boutilier et al. [2℄, we de�ne ve
tor addition, inner produ
t, and matrix-ve
tor multipli
ation operators in terms of a basi
 tree grafting operator. In Figure 14, we show how ve
toraddition is
arried out. Note that the operation is
arried out without expli
itly enumerating all the entriesin the ve
tor. Hen
e, we use the term stru
tured for linear algebra operators and numeri
al algorithms builton these operators. By implementing linear algebra operators using these stru
tured operations, we
an, forexample, apply Ri
hardson's method, various extrapolation methods,
onjugate gradient des
ent, and a hostof other numeri
al algorithms to problems involving very large matri
es and ve
tors.In some
ases, the ve
tors or matri
es that result from
arrying out basi
 operations
an be larger than anyof the matrix or ve
tor terms involved in the operations. In the worst
ase, the most
ompa
t representationfor the result of a
omputation involving k terms
an be of size exponential in k. To deal with this potentialfor
ombinatorial explosion, we apply te
hniques from ma
hine learning and data
ompression to
ontrol thesize of the intermediate and �nal results of performing operations on matri
es and ve
tors. In the
ase oftrees, these methods work by pruning the leaves of trees, thereby merging blo
ks in the partitions that areimpli
it in the tree data stru
tures.By keeping tra
k of bounds on the values of the entries for indi
es in ea
h blo
k of the partitions, we
an report bounds on the error in the �nal results. Standard pruning te
hniques su
h as those presentedin [6℄
an be applied to elementary stru
tured operations to produ
e approximate stru
tured operations. Inmu
h the same way as �nite-pre
ision arithmeti
 introdu
es errors in
omputer implementations of numeri
almethods, approximate operations on matri
es and ve
tors introdu
e errors and thus require
areful analysiswith respe
t to
onvergen
e and pre
ision [7℄. Under reasonable assumptions, we
an guarantee that theresulting approximations
onverge and the error (the di�eren
e between result from the algorithm using theapproximate stru
tured operators and the true answer) is bounded.The
ontributions of this work in
lude data stru
tures for representing very large matri
es and ve
tors,a set of pro
edures that operate on these data stru
tures, and a set of analyti
al methods that enable us toapply a wide range of numeri
al methods based on linear algebra dire
tly to the solution of
ombinatorialoptimization problems involving very large matri
es and ve
tors.Referen
es[1℄ Craig Boutilier, Thomas Dean, and Steve Hanks. De
ision theoreti
 planning: Stru
tural assumptionsand
omputational leverage. Journal of Arti�
ial Intelligen
e Resear
h, 11:1{94, 1999.[2℄ Craig Boutilier, Ri
hard Dearden, and Moises Goldszmidt. Exploiting stru
ture in poli
y
onstru
tion.In Pro
eedings IJCAI 14, pages 1104{1111. IJCAII, 1995.

Neural Computing Surveys 3, 1{58, 2000, http://www.i
si.berkeley.edu/~jagota/NCS 58[3℄ Ri
hard Fikes and Nils J. Nilsson. STRIPS: A new approa
h to the appli
ation of theorem proving toproblem solving. Arti�
ial Intelligen
e, 2:189{208, 1971.[4℄ Kee-Eung Kim, Thomas Dean, and Samuel E. Hazlehurst. Linear algebra in very high-dimension ve
-tor spa
es: Algorithms and data stru
tures for implementing exa
t and approximate solution methods.Te
hni
al report, Computer S
ien
e Department, Brown University, 1999. To Appear.[5℄ Martin L. Puterman. Markov De
ision Pro
esses. John Wiley & Sons, New York, 1994.[6℄ J. Ross Quinlan. C4.5 : Programs for Ma
hine Learning. Morgan Kaufmann, 1992.[7℄ J. H. Wilkinson. Modern error analysis. SIAM Review, 1971.

